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Introduction 
 
This document provides an overview of a selection of tools for uncertainty assessment that can be 
applied to gain insights in nature and size of different sorts of uncertainties in environmental 
assessments that may occur at different locations. 
 
The tools covered in this document are: 
• Sensitivity Analysis (screening, local, global) 
• Error propagation equations ("Tier 1") 
• Monte Carlo Analysis ("Tier 2") 
• Expert Elicitation 
• NUSAP (Numeral Unit Spread Assessment Pedigree) 
• Scenario Analysis 
• PRIMA (Pluralistic fRamework of Integrated uncertainty Management and risk Analysis) 
• Checklist for Model Quality Assistance 
• Critical Review of Assumptions in models 
 
This toolbox is under development and does not pretend to be exhaustive. The tools described may in 
literature and practice exist in many different flavours, not all of them being covered in this document. 
The selection is made in such a way that the set of tools covers all sorts and locations of uncertainties 
distinguished in the uncertainty typology presented in the guidance. Also it matches current practice 
and recent Research and Development and Demonstration activities within RIVM in the fields of 
uncertainty assessment and management. 
 
To assist in selecting tools for conducting uncertainty assessment in a given case, table 1 presents the 
uncertainty typology used in the guidance and shows what tools can be used to address each of the sorts 
and locations of uncertainty distinguished. 
Some of the tools are hard to map. For instance, the PRIMA approach is a meta-method for uncertainty 
assessment integrating many of the other tools depending on its particular implementation, and hence 
covering much more of the table than is suggested at first glance. We have listed the PRIMA in those 
boxes of the table where we consider it particularly strong. The same holds true for the NUSAP 
method, which generally includes some quantitative tool (sensitivity analysis or Monte Carlo analysis) 
in combination with systematic critical review and pedigree analysis. 
Further it should be noted that the use of many of the tools is not limited to the boxes in which they are 
listed. For instance, sensitivity analysis could also be applied to assess sensitivity to different model 
structures and scenario analysis and sensitivity analysis (screening) may overlap. In a Monte Carlo 
assessment one could address model structure uncertainty by introducing a switch-parameter to switch 
between different model equations representing different conceivable model structures and sample for 
that switch-parameter from for instance a uniform distribution. So the table should not be interpreted 
too strict, it gives a rough overview of the basic scope of application of each tool. 
 
The remainder of this document provides a tool-by-tool description. For each tool we give a brief 
description of what it does and how it works and we provide the following information: 
• Brief description of the tool 
• What are the goals and use of the tool? (Including some guidance on the application of the 

tools and hints on complementarity with other tools 
• What sorts and locations of uncertainty does this tool address? 
• What resources are required to use the tool? 
• Strengths and limitations of each tool 
• Typical pitfalls of each tool 
• References to handbooks, user-guides, example case studies, web sites and in-house and  

external experts who have knowledge on and experience with each tool and who may 
be consulted by RIVM for further advice. 
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Table 1 Correspondence of the tools with the sorts and locations of uncertainty distinguished in the uncertainty typology from the hints and actions section of the quick scan.  
Entries printed in italics are not described in this toolbox because there are no standard methods to perform these tasks. 

Level of uncertainty 
(From determinism, through probability and possibility, 

to ignorance)   
Nature of 

uncertainty 
  

Type  
 

        Location 
            ↓ 

Statistical 
uncertainty  

(range+ 
probability) 

Scenario- 
uncertainty  
 (‘what-if’ 

option) 

Recognized 
Ignorance 

Knowledge 
related 

uncertainty 

Variability 
related 

uncertainty 

Qualification 
of knowledge 
base (backing)

Value-
ladenness of 

choices 

Context Ecological, 
technological, 
economic, social 
and 
political 
representation 

SA 
QA 
EE 

Sc 
QA 
SI 
EE 

Sc 
MQC 
QA 
SI 
NUSAP/EP 
EE 

NUSAP / EP 
MQC 
QA 
EE 

NUSAP / EP 
MQC 
QA 
PR 
EPR 
EE 

CRA, PRIMA 
Sc, AA, SI, EE 
PR, EPR 

Data  
(in general 
sense) 

Measurements+ 
Monitoring data; 
Survey data 

 
  Model    
  Inputs 

Measurements 
monitoring 
data; 
survey data 
Parameters 

 

SA,  
Tier 1 
MCA 
EE 

Sc 
EE 

Sc 
QA 
NUSAP 
MQC 
DV 
MV 
EE 

NUSAP 
MQC 
DV 
QA 
EE 

NUSAP 
MQC 
QA 
PR 
EPR 
EE 

CRA 
PRIMA 
Sc 
PR 
EPR 
SI 
 

Model 
Structure 

Relations 
 

SA, MMS, EE, 
MQC, MC 

Sc, MMS NUSAP, MQC,
MC, MV 

 MQC, NUSAP, QA, EE MQC, NUSAP, MC, 
MV, PR, EPR, EE 

CRA, PRIMA, MMS, 
PR, EPR, SI 

 
 
M 
o 
d 
e 
l 

Technical 
Model  

Software& 
hardware-
implement. 

QA 
SA 

QA 
SA 

QA 
SA 

PR PR SA 
PR 

Expert 
Judgement 

Narratives; 
storylines; 
advices 

SA, QA 
EE 

Sc, QA, SI, EE Sc, MQC, QA, 
SI, NUSAP/EP, 
EE 

NUSAP / EP 
MQC, QA, EE 

NUSAP / EP, MQC, 
QA, PR, EPR, EE 

CRA, PRIMA, Sc, AA 
SI, PR, EPR, EE 
 

Outputs  (indicators; 
statements) 

Sc, SA, Tier1, 
MC, EE 

Sc, SA, EE NUSAP, EE NUSAP, MQC, PR, EPR, 
EE 

NUSAP, MQC, QA, 
PR, EPR, EE 

CRA, PRIMA, PR, 
EPR 
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Explanation of abbreviations in table 1: 
 
AA  Actor Analysis 
CRA  Critical Review of Assumptions 
DV  Data Validation 
EE  Expert Elicitation 
EP  Extended Pedigree scheme 
EPR  Extended Peer Review (review by stakeholders) 
MC  Model Comparison 
MCA  Tier 2 analysis / Monte Carlo Analysis 
MMS  Multiple Model Simulation 
MQC  Model Quality Checklist 
MV  Model validation 
NUSAP  NUSAP 
PR  Peer Review 
PRIMA  PRIMA 
QA  Quality Assurance 
SA  Sensitivity Analysis 
Sc  Scenario Analysis 
SI  Stakeholder Involvement 
Tier 1  Tier 1 analysis (error propagation equation) 
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Sensitivity Analysis 

Description 
Sensitivity analysis (SA) is the study of how the variation in the output of a model (numerical 
or otherwise) can be apportioned, qualitatively or quantitatively, to different sources of 
variation, and of how the given model depends upon the information fed into it (Saltelli et al., 
2000). 
 

Goals and use 
The goal of sensitivity analysis is to understand the quantitative sources of uncertainty in 
model calculations and to identify those sources that contribute the largest amount of 
uncertainty in a given outcome of interest. 
Three types of sensitivity analysis can be distinguished: 
• Screening, which is basically a general investigation of the effects of variation in the 

inputs but not a quantitative method giving the exact percentage of the total amount of 
variation that each factor accounts for. The main purpose of screening methods is to 
identify in an efficient way a short list of the most important sensitive factors, so that in a 
follow-up uncertainty analysis the limited resources can be used in the most efficient way. 

• Local SA, the effect of the variation in each input factor when the others are kept at some 
constant level. The result is typically a series of partial derivatives - or an approximation 
thereof-, one for each factor, that defines the rate of change of the output relative to the 
rate of change of the input. 

• Global SA, the effects on the outcomes of interest of variation in the inputs, as all inputs 
are allowed to vary over their ranges. This can be extended to take into account the shape 
of their probability density functions. This usually requires some procedure for sampling 
the parameters, perhaps in a Monte Carlo form, and the result is more complex than for 
local SA.  In their book, Saltelli et al. (2000) describe a range of different statistics 
describing how this type of information can be summarized. Global SA is a variance-
analysis based method, using indices expressing the contribution of parameters to the 
variance in the output (e.g. standardized rank correlation coefficients and partial rank 
correlation coefficients) (cf. Saltelli et al. 2000). 

 
There is one particular (global) screening method for sensitivity analysis that we consider state 
of the art and recommend for its computational efficiency: the Morris algorithm (Morris, 
1991). The typical case to apply this tool is if there are many parameters and available 
resources do not allow to specify probability density functions for a full Monte Carlo analysis. 
The description of Morris given here is taken from Potting et al., (2001): "The Morris method 
for global sensitivity analysis is a so-called one step-at-a-time method, meaning that in each 
run only one input parameter is given a new value. It facilitates a global sensitivity analysis by 
making a number r of local changes at different points x(1→r) of the possible range of input 
values. The method starts by sampling a set of start values within the defined ranges of 
possible values for all input variables and calculating the subsequent model outcome. The 
second step changes the values for one variable (all other inputs remaining at their start 
values) and calculates the resulting change in model outcome compared to the first run. Next, 
the values for another variable are changed (the previous variable is kept at its changed value 
and all other ones kept at their start values) and the resulting change in model outcome 
compared to the second run is calculated. This goes on until all input variables are changed. 
This procedure is repeated r times (where r is usually taken between 5 and 15), each time with 
a different set of start values, which leads to a number of r*(k+1) runs, where k is the number 
of input variables. Such number is very efficient compared to more demanding methods for 
sensitivity analysis (Campolongo et al. 1999). 
The Morris method thus results in a number of r changes in model outcome from r times 
changing the input value of a given variable. This information is expressed in so-called 
elementary effects. These elementary effects are approximations of the gradient δy/δx of the 
model output y with respect to a specific value for input variable x. The resulting set of r 
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elementary effects is used to calculate the average elementary effect (to lose dependence of 
the specific point at which each measure was taken) and the standard deviation. The average 
elementary effect is indicated by µ, and the standard deviation by σ. The σ expresses whether 
the relation between input variable and model outcome has a linear (σ = 0) or a curvi-linear (σ 
> 0) character. (Campolongo et al. 1999) Curvi-linearity will be caused by curvi-linear (main) 
effects and interaction effects from the analysed input variable with other ones." 
 
In summary, the Morris method applies a sophisticated algorithm for global SA where 
parameters are varied one step at a time in such a way that if sensitivity of one parameter is 
contingent on the values that other parameters may take, the Morris method is likely to 
capture such dependencies. 

Sorts and locations of uncertainty addressed 
Sensitivity Analysis typically addresses statistical uncertainty (inexactness) in inputs and 
parameters. It is however also possible to use this technique to analyse sensitivity to changes 
in model structure. It does not treat knowledge uncertainty separately from variability related 
uncertainty. It provides no insight in the quality of the knowledge base nor in issues of value 
loading. 
 

Required resources 
Skills: 
• Basic computer skills 
• Basic knowledge of statistical concepts 
 
Computer requirements: 
Software for sensitivity analysis will run on an average PC. The precise requirements depend 
on the model to which you apply the sensitivity analysis. 
 

Strengths and limitations 
 Typical strengths of Sensitivity Analysis are: 

• Gives insight in the potential influences of all sorts of changes in inputs 
• Helps discriminating across parameters according to importance for the accuracy of the 

outcome 
• Software for sensitivity analysis is freely available  

(e.g. SIMLAB: http://sensitivity-analysis.jrc.cec.eu.int/default2.asp?page=SIMLAB) 
• Easy to use 

 
Typical weaknesses of Sensitivity Analysis are: 
• Has a tendency to yield an overload of information.  
• Sensitivity analysis does not require one to assess how likely it is that specific values of 

the parameters will actually occur.  
• Sensitivity testing does not encourage the analyst to consider dependencies between 

parameters and probabilities that certain values will occur together. 
• (Morris:) interactions and non-linearity are hard to distinguish with the Morris method. 
 
These weaknesses can be partly overcome by a skilled design of the SA experiments, taking 
into account dependencies and restrictions and by being creative in structuring, synthesizing 
and communicating the information captured in the large amount of numbers produced by the 
sensitivity analysis.  
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Guidance on application 
• If a likely range is not known one can use for instance the point values plus or minus 50% 

or a factor 2 (half the point value to double the point value), depending on the nature of 
the variable, as a first go 

• Make sure that the ranges do not include physically impossible values 
• Explore possible dependencies 

 

Pitfalls 
Typical pitfalls of SA can be: 
• Forgetting that SA takes the model structure and boundaries for granted 
• Wasting time on finding out likely ranges for unimportant parameters 

This could be avoided by using a two-step approach applying a default range (e.g. a 
factor 2) on all parameters to find out which parameters appear to be sensitive at all. In 
such a case one should however also go over the list of variables identified as insensitive 
and include for the second step also those variables where one has doubts as to whether 
one is sure that the default range used in that calculation captures the full conceivable 
range for that parameter. 

• Ignoring dependencies between parameters 
• Exploring irrelevant or physically unrealistic parts of the parameter hyper space 

References 
Handbooks: 
Andrea Saltelli, Karen Chan, Marian Scott, Sensitivity Analysis John Wiley & Sons publishers, 
Probability and Statistics series, 2000. 
 
Andrea Saltelli, Stefano Tarantola, Francesca Campolongo, Marco Ratto, Sensitivity Analysis 
in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons publishers, 2004 
(Where the Saltelli et al. 2000 book provides the theoretical basis, this book is a 
comprehensive practical compendium of recommended methods tailored to specified settings, 
built around a set of examples and the freely available SIMLAB software.). 
 
Papers 
Campolongo, F., S. Tarantola and A. Saltelli. Tackling quantitatively large dimensionality 
problems. Computer Physics Communication, Vol. 1999, Issue 117, pp75-85. 
 
Janssen, P.H.M., P.S.C. Heuberger, & R.A. Sanders. 1994. UNCSAM: a tool for automating 
sensitivity and uncertainty analysis. Environmental Software 9:1-11. 
 
Morris, M.D. Factorial sampling plans for preliminary computational experiments. 
Technometrics, Vol. 33 (1991), Issue 2. 
 
RIVM example of application of Morris: 
Jose Potting, Peter Heuberger, Arthur Beusen, Detlef van Vuuren and Bert de Vries, 
Sensitivity Analysis, chapter 5 in: Jeroen P. van der Sluijs, Jose Potting, James Risbey, Detlef 
van Vuuren, Bert de Vries, Arthur Beusen, Peter Heuberger, Serafin Corral Quintana, Silvio 
Funtowicz, Penny Kloprogge, David Nuijten, Arthur Petersen, Jerry Ravetz. 2001. 
Uncertainty assessment of the IMAGE/TIMER B1 CO2 emissions scenario, using the NUSAP 
method Dutch National Research Program on Climate Change, Report no: 410 200 104 
(2001), 227 pp. (downloadable from http://www.nusap.net) 
 
Websites 
http://sensitivity-analysis.jrc.cec.eu.int/default.htm 
 
Software 
Available software for sensitivity analysis includes: 
• SIMLAB: http://sensitivity-analysis.jrc.cec.eu.int/default2.asp?page=SIMLAB 
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• USATOOL: Currently under development at RIVM. 
• See also the software tools listed under Monte Carlo Analysis. 
 
Experts 

 RIVM: Peter Janssen (UNCSAM), Peter Heuberger (UNCSAM, Morris) 
National: Ad Seebregts (ECN), Roger Cooke (TUD), Prof. Kleijnen (KUB), M. Jansen 
(Alterra, PRI) 

 International: Andrea Saltelli (JRC) Stefano Tarantola (JRC), John van Aardenne 
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Error propagation equations ("TIER 1") 

Description 
The Intergovernmental Panel on Climate Change (IPCC) has issued "Good Practice Guidance 
and Uncertainty Management in National Greenhouse Gas Inventories" (IPCC, 2000). In this 
report IPCC distinguishes two levels of comprehension for quantitative uncertainty assessment 
in emissions monitoring, which they named TIER 1 and TIER 2. TIER 1 uses the error 
propagation equation (Mandel 1984, Bevington and Robinson 1992) to estimate error 
propagation in calculations whereas TIER 2 consists of a full Monte Carlo analysis. Since this 
influential report, the method using the classic analytical equations for error propagation (well 
known by most students of the experimental sciences) has now become widely referred to as the 
'TIER 1' approach.  
 

Goals and use 
The goal of the error propagation equations is to assess how the quantified uncertainties in model 
inputs propagate in model calculations to produce and uncertainty range in a given model 
outcome of interest. For the most common operations, the error propagation rules are 
summarized in box 1. 
 

 

Box 1   Error propagation rules using standard deviation (σ ) 
 
Addition and Subtraction: z = x + y + ..   or    z = x - y - .. 
 

..)()( 22 ++= yxz σσσ  

 
 
Multiplication by an exact number: z = c x 
 

xz cσσ =  
 
Multiplication and Division: z = x y    or    z = x/y 
 

..
22

+







+






=

yxz
yxz σσσ

 

 
Products of powers: z=xm yn 

 
22









+






=

y
n

x
m

z
yxz σσσ

 

For instance, in the case of emission monitoring where emissions are estimated by multiplying 
activity data by emission factors the error propagation equation can be written as: 
 

σE
2= σA

2F2 + σF
2A2 

 
Where σE

2 is the emission variance, σA
2 is the variance of the activity data, σF

2 is the variance of 
the emission factor, A is the expected value of the activity data, and F is the expected value of 
the emission factor. 
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The conditions imposed for use of the error propagation equation are: 
• The uncertainties are relatively small, the standard deviation divided by the mean value being 
less than 0.3; 
• The uncertainties have Gaussian (normal) distributions; 
• The uncertainties have no significant covariance. 
Under these conditions, the uncertainty calculated for the emission rate is appropriate (IPCC, 
2000). The method can be extended to allow non-Gaussian distributions and to allow for 
covariances (see e.g.: http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc55.htm). 
 
For a more comprehensive description of the TIER 1 approach we refer to annex 1 of the 
IPCC good practice guidelines (IPCC, 2001) 
 

Sorts and locations of uncertainty addressed 
TIER 1 addresses statistical uncertainty (inexactness) in inputs and parameters and estimates 
its propagation in simple calculations. It does not treat knowledge uncertainty separately from 
variability related uncertainty. It provides no insight in the quality of the knowledge base or in 
issues of value loading. 

 

Required resources: 
The error propagation equations require no specific hardware or software and can typically be 
applied on the back of the envelope or on an ordinary scientific calculator, or using a 
spreadsheet. 
Most of the time will be consumed by quantifying the uncertainties in the parameters and 
inputs, which can be derived from statistics if available or otherwise can for instance be 
obtained by means of expert elicitation. 

 

Strengths and limitations 
Typical strengths are: 
• Requires very little resources and skills (but the choice of the aggregation level for the 

analysis is an important issue that does require skills) 
• Quick (but can be dirty) 
 
 
Typical weaknesses are: 
• Has a limited domain of applicability (e.g. near-linearity assumption) 
• The basic error propagation equations cannot cope well with distributions with other 

shapes than normal (but the method can be extended to account for other distributions). 
• Leads to a tendency to assume that all distributions are normal, even in cases where 

knowledge of the shape is absent and hence a uniform distribution would be reflecting 
better the state of knowledge. 

• Can not easily be applied in complex calculations 
 

Guidance on application 
Do not use the error propagation equation if you do not have good reasons to assume that 
parameter uncertainty is distributed normally. Use Monte Carlo analysis instead. 
 
For further guidance we refer to standard handbooks on statistics and measurement error 
analysis. 
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Pitfalls 
Typical pitfalls in the use of the error propagation equation are:  
• Forgetting that TIER 1 takes the model structure and boundaries for granted 
• Bias towards assuming all parameter uncertainty to be distributed normally. 
• Ignoring dependencies and covariance 

 

References 
Bevington, P. R. and D.K. Robinson, D. K. (1992) Data Reduction and Error Analysis for the 
Physical Sciences, WCB/McGraw-Hill Boston USA, p.328. 
 
IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas 
Inventories, IPCC, 2000. 
 
Harry Ku (1966). Notes on the Use of Propagation of Error Formulas, J Research of National 
Bureau of Standards-C. Engineering and Instrumentation, Vol. 70C, No.4, pp. 263-273.  
 
Mandel, J. (1984) The Statistical Analysis of Experimental Data, Dover Publications New 
York, USA, p.410. 
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Monte Carlo Analysis ("TIER 2") 

Description 
Monte Carlo Simulation is a statistical numerical technique for stochastic model-calculations 
and analysis of error propagation in (model) calculations.  
 

Goals and use 
The goal of Monte Carlo analysis is to trace out the structure of the distributions of model 
output that results from specified uncertainty distributions of model inputs and model 
parameters. In it's simplest form this distribution is mapped by calculating the deterministic 
results (realizations) for a large number of random draws from the individual distribution 
functions of input data and parameters of the model. To reduce the required number of model 
runs needed to get sufficient information about the distribution in the outcome (mainly to save 
computation time), advanced sampling methods have been designed such as Latin Hyper Cube 
sampling. The latter makes use of stratification in the sampling of individual parameters; like 
in random Monte Carlo sampling, pre-existing information about correlations between input 
variables can be incorporated. Monte Carlo analysis requires the analyst to specify probability 
distributions of all inputs and parameters, and the correlations between them. Both probability 
distributions and correlations are usually poorly known. 
 
A number of software packages are available to do Monte Carlo analysis. Widely used are the 
commercial packages @Risk (http://www.palisade.com) and Crystal Ball 
(http://www.decisioneering.com/crystal_ball). Both are packages that are designed as fully 
integrated MS-Excel add-in programs with its own toolbar and menus. These packages can be 
used with minimal knowledge on the sampling and calculations techniques itself, which makes 
Monte Carlo Assessment easy (but tricky because it allows incompetent use). Another 
commercial package is Analytica (http://www.lumina.com), which is a quantitative modelling 
environment with built-in Monte Carlo algorithms. 
 
If your model is not built in Excel you can use the SimLab package, which is freely available 
from the JRC (http://sensitivity-analysis.jrc.cec.eu.int/default2.asp?page=SIMLAB). SimLab 
can also be interfaced with Excel, but this requires some programming skills. For the UNIX 
and MS-Dos environments you can use the UNSCAM (Janssen et al., 1994) software tool. 
RIVM is presently developing a new tool for Monte Carlo analysis, USATOOL, which will 
run under Windows. 
 
Additionally most Monte Carlo analysis software offers the possibility to determine the 
relative contribution of uncertainty in each parameter to the uncertainty in a model output, e.g. 
by sensitivity charts, and can be used for a sophisticated analysis of trends in the presence of 
uncertainty. 
 

Sorts and locations of uncertainty addressed 
Monte Carlo analysis typically addresses statistical uncertainty (stochastic inexactness) in 
inputs and parameters. Although it is rarely used this way, it is possible to use Monte Carlo 
analysis also for assessing model structure uncertainty, by introducing one or more “switch 
parameter” to switch between different model structures with probabilities attached for each 
position of the switch. 
Two-dimensional Monte Carlo Analysis allows for a separate treatment of knowledge related 
uncertainty and variability related uncertainty (see below under guidance for application). In 
this two-dimensional mode, Monte Carlo Analysis provides some insight in the quality of the 
knowledge base. It does not address issues of value loading. 

Required resources 
Computer 
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Monte Carlo software packages such as Crystal Ball and @Risk run on standard PCs with 
Pentium II, 200 MHz or faster, 32 MB RAM as officially recommended minimum 
configuration. On the basis of our experiences we recommend 500 Mhz processor or 
equivalent with 256 MB RAM as minimum configuration. 
 
Training 
Packages such as Crystal Ball are very easy to learn. If you are familiar with Excel it takes less 
than one hour to get proficient with Crystal Ball.  
 
SimLab takes more time to get proficient with and requires more skills because one has to 
interface SimLab with one's own model. The forum on the SimLab website has however al lot 
of useful tips making the task easier. We recommend the book “Sensitivity Analysis in 
Practice: A Guide to Assessing Scientific Models” by Saltelli et al. 2004. It has many practical 
examples of the use of SimLab. 

Strengths and limitations 
Typical strengths of Monte Carlo simulation 
• Provides comprehensive insight in how specified uncertainty in inputs propagates through 

a model. 
• Forces analysts to explicitly consider uncertainty and interdependencies among different 

inputs. 
• Is capable to cope with any conceivable shape of PDF and can account for correlations. 
• Can be used in 2-dimensional mode to separately assess variability and epistemological 

uncertainty. 
 
Typical weaknesses of Monte Carlo simulation 
• Monte Carlo assessment is limited to those uncertainties that can be quantified and 

expressed as probabilities.  
• One may not have any reasonable basis on which to ascribe a parameterised probability 

distribution to parameters 
• May take large run-time for computational intensive models. This can partly be remedied 

by using more efficient sampling techniques (e.g. Latin Hypercube Sampling). 
• The interpretation of a probability distribution of the model output by decision makers is 

not always straightforward; there is no single rule arising out of such a distribution that 
can guide decision-makers concerning the acceptable balance between for instance 
expected return and the variance of that return. 

 

Guidance on application 
In their report "Guiding Principles for Monte Carlo Analysis" (EPA, 1997) the EPA presents 
16 good practice guidelines for doing Monte Carlo assessment. These guidelines are (we have 
modified the phrasing slightly to keep terminology consistent within the guidance documents): 
 
Selecting Input Data and Distributions for Use in Monte Carlo Analysis  
 
1. Conduct preliminary sensitivity analyses or numerical experiments to identify model 
structures, model input assumptions and parameters that make important contributions to the 
assessment and its overall uncertainty. 
  
2. Restrict the use of probabilistic assessment to significant parameters.  
 
3. Use data to inform the choice of input distributions for model parameters.  
• Is there any mechanistic basis for choosing a distributional family?  
• Is the shape of the distribution likely to be dictated by physical or biological properties or 

other mechanisms?  
• Is the variable discrete or continuous?  
• What are the bounds of the variable?  
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• Is the distribution skewed or symmetric?  
• If the distribution is thought to be skewed, in which direction?  
• What other aspects of the shape of the distribution are known?  
 
4. Proxy data can be used to develop distributions when they can be appropriately justified.  
 
5. When obtaining empirical data to develop input distributions for model parameters, the 
basic tenets of environmental sampling should be followed. Further, particular attention 
should be given to the quality of information at the tails of the distributions.  
 
6. Depending on the objectives of the assessment and the availability of empirical data to 
estimate PDFs, expert elicitation can be applied to draft probability density functions. When 
expert judgment is employed, the analyst should be very explicit about its use. 
 
Evaluating variability and knowledge limitations 
 
7. It is useful to distinguish between uncertainty stemming from intrinsic variability and 
heterogeneity of the parameters on the one hand and uncertainty stemming from knowledge 
limitations on the other hand. Try to separate them in the analysis where possible to provide 
greater accountability and transparency. The decision about how to track them separately can 
only be made on a case-by-case basis for each variable.  
 
8. Two dimensional Monte Carlo techniques allow for the separate treatment of variability and 
epistemological uncertainty. There are methodological differences regarding how uncertainty 
stemming from variability and uncertainty stemming from knowledge limitations are 
addressed in a Monte Carlo analysis.  
 
• Variability depends on the averaging time, averaging space, or other dimensions in which 

the data are aggregated.  
• Standard data analysis tends to understate uncertainty from knowledge limitations by 

focusing solely on random error within a data set. Conversely, standard data analysis 
tends to overstate variability by implicitly including measurement errors.  

• Various types of model errors can represent important sources of uncertainty. Alternative 
conceptual or mathematical models are a potentially important source of uncertainty. A 
major threat to the accuracy of a variability analysis is a lack of representativeness of the 
data.  

 
9. Methods should investigate the numerical stability of the moments and the tails of the 
distributions.  
 
• Data gathering efforts should be structured to provide adequate coverage at the tails of the 

input distributions.  
• The assessment should include a narrative and qualitative discussion of the quality of 

information at the tails of the input distributions. 
 
10. There are limits to the assessor's ability to account for and characterize all sources of 
uncertainty. The analyst should identify areas of uncertainty and include them in the analysis, 
either quantitatively or qualitatively.  
 
Presenting the Results of a Monte Carlo Analysis  
 
11. Provide a complete and thorough description of the model or calculation scheme and its 
equations, including a discussion of the limitations of the methods and the results. 
 
12. Provide detailed information on the input distributions selected. This information should 
identify whether the input represents largely variability, largely uncertainty, or some 
combination of both. Further, information on goodness-of-fit statistics should be discussed.  
 
A PDF plot is useful for displaying:  
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• The relative probability of values;  
• The most likely values (e. g., modes);  
• The shape of the distribution (e. g., skewness, kurtosis); and  
• Small changes in probability density.  
 
A CDF plot is good for displaying:  
• Fractiles, including the median;  
• Probability intervals, including confidence intervals;  
• Stochastic dominance; and  
• Mixed, continuous, and discrete distributions.  
 
13. Provide detailed information and graphs for each output distribution.  
 
14. Discuss the presence or absence of dependencies and correlations.  
 
15. Calculate and present point estimates. 
 
16. A progressive disclosure of information style in presentation, in which briefing materials 
are assembled at various levels of detail, may be helpful. Presentations should be tailored to 
address the questions and information needs of the audience.  
 
• Avoid excessively complicated graphs. Keep graphs intended for a glance (e. g., overhead 

or slide presentations) relatively simple and uncluttered. Graphs intended for publication 
can include more complexity.  

• Avoid perspective charts (3-dimensional bar and pie charts, ribbon charts), pseudo-
perspective charts (2-dimensional bar or line charts).  

• Color and shading can create visual biases and are very difficult to use effectively. Use 
color or shading only when necessary and then, only very carefully. Consult references on 
the use of color and shading in graphics.  

• When possible in publications and reports, graphs should be accompanied by a table of 
the relevant data.  

• If probability density or cumulative probability plots are presented, present both, with one 
above the other on the same page, with identical horizontal scales and with the location of 
the mean clearly indicated on both curves with a solid point. 

• Do not depend on the audience to correctly interpret any visual display of data. Always 
provide a narrative in the report interpreting the important aspects of the graph.  

• Descriptive statistics and box plots generally serve the less technically oriented audience 
well. Probability density and cumulative probability plots are generally more meaningful 
to risk assessors and uncertainty analysts.  

 
For a full discussion of these 16 guidelines we refer to the EPA report (EPA, 1997).  
 
The EPA report also gives some guidance on the issue of constructing adequate probability 
density functions using proxy data, fitting distributions, using default distributions and using 
subjective distributions. Important questions in this process are: 
 
• Is there Prior Knowledge about Mechanisms?  
• Are the proxy data of acceptable quality and representativeness to support reliable 

estimates?  
• What uncertainties and biases are likely to be introduced by using proxy data? 
• How are the biases likely to affect the analysis and can the biases be corrected? 
 
In identifying plausible distributions to represent variability, the following characteristics of 
the variable should be taken into account:  
• Nature of the variable (discrete or continuous) 
• Physical or plausible range of the variable (e. g., takes on only positive values)  
• Symmetry of the Distribution. (E.g. is the shape of the distribution likely to be dictated by 

physical/ biological properties such as logistic growth rates)  
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• Summary Statistics (Frequently, knowledge on ranges can be used to eliminate 
inappropriate distributions; If the coefficient of variation is near 1.0, then an exponential 
distribution might be appropriate etc.) 

 

Pitfalls 
Typical pitfalls of Monte Carlo Analysis are: 
• Forgetting that Monte Carlo analysis takes the model structure and boundaries for granted 
• Ignoring correlations 
• Hyper precision: Often the PDFs on the inputs used have the status of educated guesses. 

The output produced by the software packages usually come out the computer with a high 
number of digits, which are certainly not significant. Also the shapes of the input 
distributions are usually not well known, therefore one should not attribute too much 
meaning to the precise shape of the distribution as it comes out of the calculation. 

• Glossy reports: Present day software packages for Monte Carlo Analysis can be used 
easily without requiring prior knowledge of Monte Carlo analysis or prior theoretical 
knowledge of probability distributions theory. The somewhat glossy results produced by 
the computer look very professional even if the experiment was poorly designed. We 
therefore recommend not using these packages without understanding the basics of 
probability distributions theory, correlations and Monte Carlo analysis. The handbooks 
that go with the software provide good primers on these issues. We particularly 
recommend the Crystal Ball handbook in this respect. 

• Note that several software packages for Monte Carlo Analysis (inter alia SimLab, and 
Crystal Ball) give false results if Windows is configured to use a comma as decimal 
separator rather than a dot. 
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NUSAP 

Description 
NUSAP is a notational system proposed by Funtowicz and Ravetz (1990), which aims to 
provide an analysis and diagnosis of uncertainty in science for policy. It captures both 
quantitative and qualitative dimensions of uncertainty and enables one to display these in a 
standardized and self-explanatory way. It promotes criticism by clients and users of all sorts, 
expert and lay and will thereby support extended peer review processes. 
 

Goals and use 
The goal of NUSAP is to discipline and structure the critical appraisal of the knowledge base 
behind quantitative policy relevant scientific information. The basic idea is to qualify 
quantities using the five qualifiers of the NUSAP acronym: Numeral, Unit, Spread, 
Assessment, and Pedigree. By adding expert judgment of reliability (Assessment) and 
systematic multi-criteria evaluation of the production process of numbers (Pedigree), NUSAP 
has extended the statistical approach to uncertainty (inexactness) with the methodological 
(unreliability) and epistemological (ignorance) dimensions. By providing a separate 
qualification for each dimension of uncertainty, it enables flexibility in their expression. By 
means of NUSAP, nuances of meaning about quantities can be conveyed concisely and 
clearly, to a degree that is quite impossible with statistical methods only.  
 
We will discuss the five qualifiers. The first is Numeral; this will usually be an ordinary 
number; but when appropriate it can be a more general quantity, such as the expression "a 
million" (which is not the same as the number lying between 999,999 and 1,000,001). Second 
comes Unit, which may be of the conventional sort, but which may also contain extra 
information, as the date at which the unit is evaluated (most commonly with money). The 
middle category is Spread, which generalizes from the "random error" of experiments or the 
"variance" of statistics. Although Spread is usually conveyed by a number (either ±, % or 
"factor of") it is not an ordinary quantity, for its own inexactness is not of the same sort as that 
of measurements. Methods to address Spread can be statistical data analysis, sensitivity 
analysis or Monte Carlo analysis possibly in combination with expert elicitation. 
 
The remaining two qualifiers constitute the more qualitative side of the NUSAP expression. 
Assessment expresses qualitative judgments about the information. In the case of statistical 
tests, this might be the significance level; in the case of numerical estimates for policy 
purposes, it might be the qualifier "optimistic" or "pessimistic". In some experimental fields, 
information is given with two ± terms, of which the first is the spread, or random error, and 
the second is the "systematic error" which must estimated on the basis of the history of the 
measurement, and which corresponds to our Assessment. It might be thought that the 
"systematic error" must always be less than the "experimental error", or else the stated "error 
bar" would be meaningless or misleading. But the "systematic error" can be well estimated 
only in retrospect, and then it can give surprises. 
 
Finally there is P for Pedigree, which conveys an evaluative account of the production process 
of information, and indicates different aspects of the underpinning of the numbers and 
scientific status of the knowledge used. Pedigree is expressed by means of a set of pedigree 
criteria to assess these different aspects.  Assessment of pedigree involves qualitative expert 
judgment. To minimize arbitrariness and subjectivity in measuring strength, a pedigree matrix 
is used to code qualitative expert judgments for each criterion into a discrete numeral scale 
from 0 (weak) to 4 (strong) with linguistic descriptions (modes) of each level on the scale. 
Each special sort of information has its own aspects that are key to its pedigree, so different 
pedigree matrices using different pedigree criteria can be used to qualify different sorts of 
information. Table 1 gives an example of a pedigree matrix for emission monitoring data. An 
overview of pedigree matrices found in the literature is given in the pedigree matrices section 
of http://www.nusap.net. Risbey et al. (2001) document a method to draft pedigree scores by 

 21

http://www.nusap.net/


means of expert elicitation. Examples of questionnaires used for eliciting pedigree scores can 
be found at http://www.nusap.net. 
 
Table 1 Pedigree matrix for emission monitoring data (Risbey et al., 2001; adapted from Ellis 
et al., 2000a, 2000b). 

 
Score Proxy 

representation 
Empirical basis Methodological 

rigour 
Validation 

4 An exact measure 
of the desired 
quantity 

Controlled 
experiments and 
large sample direct 
measurements 

Best available 
practice in well 
established 
discipline 

Compared with 
independent 
measurements of 
the same variable 
over long domain 

3 Good fit or measure Historical/field data 
uncontrolled 
experiments small 
sample direct 
measurements 

Reliable method 
common within est. 
discipline Best 
available practice in 
immature discipline 

Compared with 
independent 
measurements of 
closely related 
variable over 
shorter period 

2 Well correlated but 
not measuring the 
same thing 

Modelled/derived 
data Indirect 
measurements 

Acceptable method 
but limited 
consensus on 
reliability 

Measurements not 
independent proxy 
variable limited 
domain 

1 Weak correlation 
but commonalities 
in measure 

Educated guesses 
indirect approx. rule 
of thumb est. 

Preliminary 
methods unknown 
reliability 

Weak and very 
indirect validation 

0 Not correlated and 
not clearly related 

Crude speculation No discernible 
rigour 

No validation 
performed 

 
We will briefly elaborate the four criteria in this example pedigree matrix. 
 
Proxy representation 
Sometimes it is not possible to measure directly the thing we are interested in or to represent it 
by a parameter, so some form of proxy measure is used. Proxy refers to how good or close a 
measure of the quantity that we measure or model is to the actual quantity we seek or 
represent. Think of first order approximations, over simplifications, idealizations, gaps in 
aggregation levels, differences in definitions, non-representativeness, and incompleteness 
issues. 
 
Empirical basis 
Empirical basis typically refers to the degree to which direct observations, measurements and 
statistics are used to estimate the parameter. Sometimes directly observed data are not 
available and the parameter or variable is estimated based on partial measurements or 
calculated from other quantities. Parameters or variables determined by such indirect methods 
have a weaker empirical basis and will generally score lower than those based on direct 
observations. 
 
Methodological rigour 
Some method will be used to collect, check, and revise the data used for making parameter or 
variable estimates.  Methodological quality refers to the norms for methodological rigour in 
this process applied by peers in the relevant disciplines. Well-established and respected 
methods for measuring and processing the data would score high on this metric, while 
untested or unreliable methods would tend to score lower. 
 
Validation 
This metric refers to the degree to which one has been able to crosscheck the data and 
assumptions used to produce the numeral of the parameter against independent sources. In 
many cases, independent data for the same parameter over the same time period are not 
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available and other data sets must be used for validation. This may require a compromise in 
the length or overlap of the data sets, or may require use of a related, but different, proxy 
variable for indirect validation, or perhaps use of data that has been aggregated on different 
scales.  The more indirect or incomplete the validation, the lower it will score on this metric. 
 
 
Visualizing pedigree scores 
In general, pedigree scores will be established using expert judgements from more than one 
expert. Two ways of visualizing results of a pedigree analysis are discussed here: radar 
diagrams and kite diagrams. (Risbey et al, 2001; Van der Sluijs et al, 2001a). An example of 
both representations is given in figure 2.  
 
Figure 2   Example of representations of same results by radar diagram and kite  

diagram (Van der Sluijs et al, 2001a) 
   

 
 
Example of radar diagram representation of the 
pedigree scores for the gas depletion multiplier 
in the TIMER model as assessed by 6 experts. 

 
 
Same pedigree scores as kite diagram. 

 
Both representations use polygons with one axis for each criterion, having 0 in the center of 
the polygon and 4 on each corner point of the polygon. In the radar diagrams a colored line 
connecting the scores represents the scoring of each expert, whereas a black line represents the 
average scores.  
The kite diagrams follow a traffic light analogy. The minimum scores in each group for each 
pedigree criterion span the green kite; the maximum scores span the amber kite. The 
remaining area is red. The width of the amber band represents expert disagreement on the 
pedigree scores. In some cases the size of the green area was strongly influenced by a single 
deviating low score given by one of the experts. In those cases the light green kite shows what 
the green kite would look like if that outlier had been omitted. Note that the algorithm for 
calculating the light green kite is such that outliers are evaluated per pedigree criterion, so that 
outliers defining the light green area need not be from the same expert. 
A web-tool to produce kite diagrams is available from http://www.nusap.net.  
 
The kite diagrams can be interpreted as follows: the green colored area reflects the (apparent 
minimal consensus) strength of the underpinning of each parameter. The greener the diagram 
the stronger the underpinning is. The orange colored zone shows the range of expert 
disagreement on that underpinning. The remaining area is red. The more red you see the 
weaker the underpinning is (all according to the assessment by the group of experts 
represented in the diagram).  
A kite diagram captures the information from all experts in the group without the need to 
average expert opinion. Averaging expert opinion is a controversial issue in elicitation 
methodologies. A second advantage is that it provides a fast and intuitive overview of 
parameter strength, preserving key aspects of the underlying information. 
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Propagation of pedigree in calculations 
Ellis et al. (2000) have developed a pedigree calculator to assess propagation of pedigree in a 
calculation in order to establish pedigree scores for quantities calculated from other quantities. For 
more information we refer to http://www.esapubs.org/archive/appl/A010/006/default.htm 
 
Diagnostic Diagram 
The method chosen to address the spread qualifier (typically sensitivity analysis or Monte 
Carlo analysis) provides for each input quantity a quantitative metric for uncertainty 
contribution (or sensitivity), for instance the relative contribution to the variance in a given 
model output. The Pedigree scores can be aggregated (by dividing the sum of the scores of the 
pedigree criteria by sum of the maximum attainable scores) to produce a metric for parameter 
strength. These two independent metrics can be combined in a NUSAP Diagnostic Diagram. 
The Diagnostic Diagram is based on the notion that neither spread alone nor strength alone is 
a sufficient measure for quality. Robustness of model output to parameter strength could be 
good even if parameter strength is low, provided that the model outcome is not critically 
influenced by the spread in that parameter. In this situation our ignorance of the true value of 
the parameter has no immediate consequences because it has a negligible effect on calculated 
model outputs. Alternatively, model outputs can be robust against parameter spread even if its 
relative contribution to the total spread in model is high provided that parameter strength is 
also high. In the latter case, the uncertainty in the model outcome adequately reflects the 
inherent irreducible uncertainty in the system represented by the model. In other words, the 
uncertainty then is a property of the modelled system and does not stem from imperfect 
knowledge on that system. Mapping model parameters in the assessment diagram thus reveals 
the weakest critical links in the knowledge base of the model with respect to the model 
outcome assessed, and helps in the setting of priorities for model improvement. 

Sorts and locations of uncertainty addressed 
The different qualifiers in the NUSAP system address different sorts of uncertainty. The 
Spread qualifier addresses statistical uncertainty (inexactness) in quantities, typically in input 
data and parameters. The Assessment qualifier typically addresses unreliability. The Pedigree 
criterion further qualifies the knowledge base in such a way that it explores the border with 
ignorance by providing detailed insights in specific weaknesses in the knowledge base that 
underpins a given quantity. 
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Most of the pedigree assessments in the literature so far have addressed uncertainties located 
in "inputs" and "parameters", thereby focusing on the internal strength of the knowledge base. 
Recently Corral (2000) in his Ph.D. thesis extended the pedigree scheme to also address 
uncertainties located in the "socio political context", focusing on the external strength (its 
relations with the worlds outside the science) of the knowledge base. Criteria that Corral used 
to assess the pedigree of the processes of knowledge utilization and institutional context of the 
analysts were inter alia: Accessibility, Terminology, Completeness, Source of information, 
Verification, Colleague consensus, Extended peer acceptance, Legitimation, Experience, 
Flexibility. NUSAP can also be used to assess issues of value ladenness (see the entry “A 
method for critical review of assumptions in model-based assessments” in this tool catalogue). 

 

Required resources 
Resources required for assessing the Spread qualifier depend on the method chosen (some 
form of Sensitivity Analysis or Monte Carlo analysis usually in combination with expert 
elicitation will be needed). 
 
For the assessment of Pedigree, many resources (pedigree matrices, pedigree calculator, kite 
diagram maker, elicitation protocol and questionnaires) are freely available from 
http://www.nusap.net. Basic interviewing skills and awareness of motivational bias that may 
occur in any expert elicitation are required. See also the section on expert elicitation in this 
toolbox. 
 
If one uses an expert workshop, basic skills for facilitating structured group discussions are 
needed. In addition, skills are needed to arrive at a balanced composition of the workshop 
audience to minimize biases. 
 
Time required per expert elicitation in a one to one interview depends on the number of 
parameters and the complexity of the case. It may typically vary between 1 and 5 hours. A 
substantial amount of time may be needed for a good preparation of the interviews. 
 
Recommended length for a NUSAP expert elicitation workshop is between one and one and a 
half day. 
 

Strengths and limitations 
Typical strengths of NUSAP are: 
• NUSAP identifies the different sorts of uncertainty in quantitative information and 

enables them to be displayed in a standardized and self-explanatory way. Providers and 
users of quantitative information then have a clear and transparent assessment of its 
uncertainties.  

• NUSAP fosters an enhanced appreciation of the issue of quality in information. It thereby 
enables a more effective criticism of quantitative information by providers, clients, and 
also users of all sorts, expert and lay. 

• NUSAP provides a useful means to focus research efforts on the potentially most 
problematic parameters by identifying those parameters, which are critical for the quality 
of the information. 

• It is flexible in its use and can be used on different levels of comprehensiveness: from a 
'back of the envelope' sketch based on self elicitation to a comprehensive and 
sophisticated procedure involving structured informed in-depth group discussions on a 
parameter by parameter format, covering each pedigree criterion combined with a full 
blown Monte Carlo assessment. 

• The diagnostic diagram provides a convenient way in which to view each of the key 
parameters in terms of two crucial attributes. One is their relative contribution to the 
sensitivity of the output, and the other is their strength. When viewed in combination on 
the diagram, they provide indications of which parameters are the most critical for the 
quality of the result. 
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Typical weaknesses of NUSAP are: 
• The method is relatively new, with a limited (but growing) number of practitioners. There 

is as yet no system of quality assurance in its applications, nor settled guidelines for good 
practice. 

• The scoring of pedigree criteria is to a certain degree subjective. Subjectivity can partly 
be remedied by the design of unambiguous pedigree matrices and by involving multiple 
experts in the scoring. The choice of experts to do the scoring is also a potential source of 
bias. 

• The method is applicable only to simple calculations with small numbers of parameters.  
But it may be questioned whether complicated calculations with many parameters are 
capable of effective uncertainty analysis by any means. 

 

Guidance on application 
• For guidance on the application of NUSAP we refer to http://www.nusap.net 
• When eliciting pedigree scores, always ask for motivation for the score given and 

document the motivation along with the pedigree scores. 
• Expert disagreement on pedigree scores for a parameter can be an indication of epistemic 

uncertainty about that parameter. Find out whether there are different paradigms or 
competing schools of thought on that parameter. 

Pitfalls 
Typical pitfalls of NUSAP are: 
• Misinterpreting low pedigree scores as indicating low-quality science.  In relation to 

whole disciplines, this amounts to 'physics-envy'.  Quality in science depends not on 
removing uncertainty but on managing it. 

• Misinterpreting pedigree scores as an evaluation of individual items of information, with 
low scores indicating bad research.  The pedigree analysis is of the characteristic limits of 
knowledge of areas of inquiry. The quality of individual items of information depends 
crucially on the craftsmanship of the work, requiring a closer analysis, which the pedigree 
does not undertake. 

• Motivational bias towards high pedigrees in (self) elicitation, especially in case of 
numbers where one or one's institute was involved in the knowledge production. This 
pitfall is avoided by the use of trained facilitators in an open process for the construction 
and assignment of pedigrees. 

• Falsely thinking that pedigree and spread are correlated: In principle these are 
independent dimensions. 
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Expert Elicitation for Uncertainty Quantification 

Description 
Expert elicitation is a structured process to elicit subjective judgements from experts1. It is 
widely used in quantitative risk analysis to quantify uncertainties in cases where there is no or 
too few direct empirical data available to infer on uncertainty. Usually the subjective 
judgement is represented as a ‘subjective’ probability density function (PDF) reflecting the 
experts degree of belief.  
 

Goals and Use 
Expert elicitation in the context of uncertainty quantification aims at a credible and traceable 
account of specifying probabilistic information regarding uncertainty, in a structured and 
documented way.  Typically it is applied in situations where there is scarce or insufficient 
empirical material for a direct quantification of uncertainty, and where it is relevant to obtain 
scrutable and defendable results (Hora, 1992). 
Several elicitation protocols have been developed amongst which the much-used Stanford/SRI 
Protocol is the first (Spetzler and von Holstein, 1975; see also Merkhofer, 1987; Morgan and 
Henrion,1990; chapter 6 and 7). Related expert elicitation protocols have been employed by 
Sandia National Laboratories for uncertainty quantification in the nuclear energy risk 
assessment field (Hora and Iman, 1989; Keeney and von Winterfeldt, 1991; Ortiz et al. 1991; 
Hora, 1992; NCRP, 1996). As an outcome of a joint project of the European union and the US 
Nuclear Regulatory Commission, Cooke and Goossens (2000a,b) have developed a European 
guide for expert judgement on uncertainties of accident consequence models for nuclear 
power plants. 
 
In the sequel we will discuss two specific elicitation protocols, briefly commenting on the 
steps involved. 
 
[A] The first protocol is based for a large part on the Stanford/SRI protocol, but additionally 
provides an explicit assessment of the quality of the uncertainty information on basis of a 
pedigree analysis (see Risbey et al., 2001; van der Sluijs et al. 2002, and the NUSAP entry in 
this tool-catalogue). The following steps are involved:  
 
Identifying and selecting experts 

It is important to assemble an expert panel representing all points of view. 
Motivating the Subject 

Establish rapport with the expert. Explain to the expert the nature of the problem at 
hand and the analysis being conducted. Give the expert insight on how their 
judgements will be used. Discuss the methodology and explain the further structure 
of the elicitation procedure. Discuss the issue of motivational biases and try to let the 
expert make explicit any motivational bias that may distort his judgement. 

Structuring 
The objective is to arrive at a clear and unambiguous definition of the quantity to be 
assessed. Choose a unit and scale that is familiar to the expert in order to characterize 
the selected variable. Underlying conditions and assumptions that the expert is 
making should be clearly identified. 

Elicit extremes 
Let the expert state the extreme minimum and maximum conceivable values for the 
variable. 

Extreme assessment 
Ask the expert to try to envision ways or situations in which the extremes might be 
broader than he stated. Ask the expert to describe such a situation if he can think of 
one, and allow revision of the extreme values accordingly in that event. 

                                                           
1 An expert is a person who has special skills or knowledge in a particular field. A judgement is the 
forming of an estimate or conclusion from information presented to or available to the expert. 
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Assessment of knowledge level and selection of distribution 
Before letting the expert specify more detailed information about the distribution it is 
important that this is done in a way that is consistent with the level of knowledge 
about the variable. In particular, we seek to avoid specifying more about the 
distribution shape than is actually known.  
Risbey et al. (2001) have proposed a heuristic for this, making use of aggregated 
normalized pedigree scores (see NUSAP entry in this tool-catalogue) to guide 
selection of distribution shape: If the aggregated normalized pedigree grade for the 
parameter is less than 0.3, use a uniform distribution. If it is between 0.3 and 0.7, use 
a triangular distribution. If it is greater than 0.7, use a normal distribution or other 
distributions as appropriate. 

Specification of distribution 
If the expert selected a uniform distribution you do not need to elicit any further 
values. If the expert selected a triangular distribution, let him estimate the mode. If he 
chooses another shape for the distribution (e.g. normal), you have to elicit either 
parameters (e.g. mean and standard deviation for normal distribution) or values of -
for instance - the 5th, 50th, and 95th percentiles. Let the expert briefly justify his 
choice of distribution. 

Check 
Verify the probability distribution constructed against the expert's beliefs, to make 
sure that the distribution correctly represents those beliefs. 

Aggregating expert distributions 
In case that multiple experts have assessed PDFs, there is no single best way to 
combine their findings. It is recommended to run the Monte Carlo simulations of the 
model under study separately for each expert’s uncertainty specification, and to 
compare their differences. If differences between experts are large, one should 
analyse where and why this happens. A conservative choice could be to select the 
broadest PDF from among the different experts, and use that, unless there are good 
reasons not to do so. In communicating the results one should explicitly address that 
there is expert disagreement, and mention that the choice of distribution is somehow 
indicative of the upper range of the spread amongst the disparate experts. 

 
 
[B] The second protocol that we present is the one by Cooke and Goossens (2000a,b) which 
was further adapted by Van der Fels-Klerx et al (2002) for use in heterogeneous expert panels 
on broad or multidisciplinary issues. Major ground-rule in Cooke and Goossens set-up is that 
the experts should in principle only be questioned about (potentially) observable quantities 
within the area of their expertise1. Moreover the protocol aims to explicitly assess the expert’s 
performance by letting the expert elicit so called ‘performance’ or ‘seed’ variables, the values 
of which are unknown to the expert, but known to the analyst. Furthermore performance based 
weights can be determined to aggregate the assessed PDFs of the individual experts into a 
combined assessment, which is supposed to reflect a kind of rational consensus on the PDF at 
hand. The various steps of Cooke and Goossens (2000a,b), protocol are as follows: 
 
Preparation for elicitation: 
(1) Definition of the ‘case structure’ document which clearly describes the field of interest 

for which expert judgements will be required; the document moreover discusses the aim 

                                                           
1Therefore they e.g. prefer to elicit/question on concentrations rather than on transfer function 
coefficients in compartmental models; the uncertainty information can then be translated back into 
uncertainty information on the coefficients (e.g. by probabilistic inversion cf. Cooke and Kraan, 2000; 
Bedford and Cooke, 2001). 
Reason for this rather ‘empirical stance’ concerning questioning on (potentially) observable quantities, 
is that Cooke and Goossens view uncertainty – from a scientific and engineering viewpoint - essentially 
as ‘that which is removed by observation’. Moreover they put forward that not all experts may 
subscribe to the particular model choices that have been made and that parameters may not necessarily 
correspond to the measurement material with which they are familiar. A further argument for their 
stance is to be found in the fact that direct specification/elicitation  of correlations between variables in 
abstract spaces can be rather problematic and arbitrary.  
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of the elicitation, and provides background information on applied assumptions and on 
which issues are taken into account in the uncertainty assessment and which issues are 
excluded. 

(2) Identification of the variables of interest or ‘target’ variables for the uncertainty 
elicitation. Typically a certain pre-selection has to take place, to focus on the most 
important ones for expert elicitation, since the number of questions to be asked by the 
experts is limited. 

(3) Identification of the ‘query’ or ‘elicitation’ variables: Target variables, which can in 
principle be measured by a procedure with which experts are familiar, can directly serve 
as query variables in an elicitation session. However, target variables for which no such 
measurement procedures exist cannot be quantified by direct elicitation, and for these 
variables other derived elicitation query variables (e.g. proxy’s) must be found which – 
ideally - should be (potentially) observable quantities. Information on the uncertainty in 
these derived elicitation variables must then be translated back into the target variables 
(see step (14)). 

(4) Identification of performance variables (or seed variables): These variables serve as a 
means to assess the expert’s performance in rendering uncertainty information on the 
target variables. There must be experimental evidence on the seed variables, which is 
unknown to the experts, but known to the analyst, against which the expert’s 
performance can be gauged somehow. Preferably the seed parameters are so-called 
‘domain variables’, referring directly to the target variables. When this is not feasible, 
‘adjacent variables’ may be used. 

(5) Identification of experts: In this step an (as large as possible) list of names of 
‘domain’ experts is collected 

(6) Selection of experts: In general, the largest possible number of experts should be 
used, but at least four. Selection of experts may take place on basis of selection 
criteria (e.g. reputation in field of interest, experimental experience; diversity in 
background, balance of views etc.) 

(7) Definition of an elicitation format document, which should contain clear questions, 
explanations, and remarks on what is to be included or excluded in the uncertainty 
assessments, as well as the specific format in which the assessments should be provided 
by the experts. The elicitation principally focuses on variables, which are (at least in 
theoretical sense) measurable. The other target variables parameters are deduced by 
probabilistic inverse modelling principle (see point (3) and (14). 

(8) Dry run exercise: Performing a try out of the elicitation serves to find out where 
ambiguities and flaws need to be repaired, and whether all relevant information and 
questions are provided. 

(9) Training experts for the quantitative assessment task: Typically experts are asked to 
provide their subjective PDFs in terms of quantiles of the cumulative distribution, for 
instance, 5%, 50% and 95% percentiles. They need to be trained in providing subjective 
assessments in probabilistic terms, and in understanding subjective probability related 
issues. 

 
Elicitation: 
(10) Expert elicitation session, where the experts are questioned individually by an analyst1 to 

assess the PDF of the query variables (including the seed variables), referring to his field 
of expertise. As an aid in this process Van der Fels-Klerx et al. (2002) recommend the 
use of the interactive software package  ELI2 (van Lenthe, 1993), which makes the 
process of eliciting continuous PDFs  easier and less prone to errors and biases. 
In addition to the individual expert interviews, there will in some cases also be joint 
expert meetings, e.g. to discuss general starting points, or in an intermediate stage as a 
qualitative wrap-up reviewing of rationales behind the assessments, which can then be 
used as a shared information base for the next iteration in the individual expert 
elicitation. 

                                                           
1 In complex situations two analysts will be recommended, a normative analyst (experienced in probability 
issues) and a substantive analyst (experienced in the expert’s field of interest)  
2 Other examples of elicitation software are PROBES and HYPO, described in Lau and Leong (1999) 
and Li et al. (2002). Apparently these packages focus on the elicitation process for Bayesian networks. 

 30



 
Post-elicitation: 
(11) Analysis of expert data, e.g. aggregating the individual experts assessment in one 

combined probability density function for each of the query variables, e.g. by weighing 
the experts according to their expertise as measured e.g. by the performance on the seed 
variables. Software for performing this task is Excalibur 
(http://ssor.twi.tudelft.nl/~risk/software/excalibur.html). 

(12) Robustness and discrepancy analysis, e.g. by removing experts or seed variables from 
the data set one at a time, and recalculating the combined PDF, comparing it with the 
original one, which uses all information. Discrepancy analysis identifies items on 
which the uncertainty assessments of the experts differ most. These items should be 
reviewed to ascertain any avoidable causes of discrepancy. 

(13) Feed back communication with the experts: In general results are treated anonymously, 
and each expert should have access to his/her assessment and performance weights and 
scores. 

(14) Post-processing analyses (e.g. inverse probability mapping) using the methods for 
processing uncertainties of the combined expert assessments (see step (11)) of query 
variables (defined in step 3) into uncertainties on the target variables from step 2. See 
e.g. Cooke and Kraan (2000).  

(15) Documentation of the results: All relevant information and data, including the rationales 
of the elicitations should be documented in formal reports, to be presented to the experts 
and to the decision makers. 

 
The above-presented methods differ in a number of respects:  
 
(i) In method [A] the qualification of the elicited uncertainty information has an explicit 

place and is done on basis of a pedigree analysis, which invites the expert to explicitly 
indicate the quality and underpinnings of his uncertainty statements. In method [B] this 
qualification is done on a more empirical basis, by measuring the performance scoring of 
the expert on basis of seed variables. If seed variables are not available, then in fact no 
explicit or systematic qualification of uncertainty information is undertaken. The best 
one can hope for is that the expert’s elicitation rationale offers suitable information on 
the underpinnings of the uncertainty specifications, but this is not explicitly commanded 
in the protocol.  
Finally, we must realize that in both cases, [A] as well as [B], one is confronted with the 
problem how ‘valid’ the established qualifications/scoring are. In [A], since the pedigree 
scoring is partly done on basis of subjective judgement, and in [B] since one can 
rightfully ask to what extent the performance scorings on the seed variables are 
representative for the measuring the performance on all the other target variables. 
Moreover the quality of the empirical information on the seed variables - which is 
ideally only known to the analysts - can also be a problematic factor in this context. 

(ii) The second major difference is that method [B] is stricter on the choice of elicitation 
variables: only those variables are explicitly elicited for which there is (in principle) 
empirical evidence with which the expert is acquainted (query variables). Information on 
other target variables is deduced indirectly from the elicited information on the query 
variables by applying formal mathematical techniques as e.g. probabilistic inversion.  
Method [A] is less strict: an expert can e.g. be elicited directly on variables, which have 
no or very low empirical support (i.e. having a low score on the empirical or validation 
pedigree). Needless to say this can make the elicited PDF rather arbitrary or badly 
testable, unless there is a good proxy, which can serve as a suitable benchmark. It is 
therefore important to ask the expert explicitly to indicate how he makes his inference on 
the PDF; the reasoning involved will typically be more heuristic and less traceable than 
in the use of probabilistic inversion. 

(iii) Thirdly, there is an apparent difference in the specification of the PDFs in both methods. 
[A] typically uses PDFs of specific and familiar form, while [B] primarily does not 
require an explicit distribution shape. It focuses instead on specifying a number of 
quantiles, e.g. the 5, 50 and 95 quantiles (see for instance van Oorschot et al. 2003 where 
additionally the 25 and 75 quantiles are elicited; note that van der Fels-Klerx, 2002 
propose to use ELI in the elicitation process which applies Beta-distributions) and then 
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uses information theoretic arguments to further process this information. As such [B] 
only seems to use limited distributional information, and further supplies it by using 
information theoretic principles/assumptions. Potentially available information on the 
specific form of a distribution is not taken fully into account. 

(iv) Finally, the treatment of multiple experts in method [A] is more heuristic and less 
formalized than under [B], where an explicit weighted averaging is applied on basis of 
the seed-variable. 

 
It is difficult to say beforehand which method, [A] or [B], would be preferable, since both have 
their strengths and weaknesses. In practice we would recommend a judicious mix of both 
methods, depending on the availability and quality of data and information, and comparing the 
pros and cons mentioned in the foregoing. 
 
Moreover in setting up a specific elicitation protocol for a particular case there will be additional 
points of attention to be dealt with. See the ‘guidance on application’-entry listed below for a 
more comprehensive overview.  

Sorts and locations of uncertainty addressed 
The Stanford Protocol and its variants typically address inexactness in inputs and parameters, 
and are focused mainly on statistical uncertainty. The Risbey et al. (2001) protocol combines 
an elicitation on PDFs with an elicitation of the parameter pedigree (see also van der Sluijs et 
al. 2001, and the NUSAP entry in this tool catalogue), and therefore addresses also the 
unreliability of inputs, parameters and instruments (or model structure). 
 
In principle expert elicitation techniques can be tailored and used to elicit and encode 
subjective expert judgements on any sort of uncertainty at any location distinguished in the 
uncertainty typology. 

 

Required resources 
• Typically performing a formal expert elicitation is a time and resource intensive activity. 

The whole process of setting up a study, selecting experts, preparing elicitation questions, 
performing expert training, expert meetings, interviews, analyses, writing rationales, 
documentation etc. can easily stretch over months or years, and involve. See Hora and 
Iman, 1989, Ortiz et al. (1991). The choice whether to perform a formal or a more 
informal elicitation (NCRP, 1996) depends on the price one is willing to pay for more 
scrutable and defensible results, and will be influenced by the relevance and controversies 
regarding the problem area.  

• One needs to have good interviewing skills and needs to have a reasonable understanding 
of the field under consideration. 

• Skill is needed to draft a good questionnaire or template for the elicitation. 
• Training in elicitation techniques may be needed. 

 

Strengths and limitations 
Strengths 
• It has the potential to make use of all available knowledge including knowledge that 

cannot be easily formalized otherwise. 
• It can easily include views of sceptics and reveals the level of expert disagreement on 

certain estimates. 
 
Weaknesses 
• The fraction of experts holding a given view is not proportional to the probability of that 

view being correct.  
• One may safely average estimates of model parameters, but if the expert's models were 

incommensurate, one may not average models (Keith, 1996). 
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• If differences in expert opinion are irresolvable, weighing and combining the individual 
estimates of distributions is only valid if weighted with competence of the experts 
regarding making the estimate. There is no good way to measure competence. In practice, 
the opinions are often weighted equally, although sometimes self-rating is used to obtain a 
weight-factor for the experts competence  

• The results are sensitive to the selection of the experts whose estimates are gathered. 
 
Although subjective probability is an imperfect substitute for established knowledge and 
despite the problems of aggregation of expert judgement, if nothing better is available it is 
better to use subjective probability distributions than deterministic point-values so that one has 
at least a first approximation of the uncertainty. 
 

Guidance on application  
A good primer on expert elicitation is Frey, 1998, which is available from: 
http://courses.ncsu.edu/classes/ce456001/www/Background1.html. See also Baecher, 2002 
available from http:/www.glue.umd.edu/~gbaecher/papers.d/judge_prob.d/judge_prob.html. 
For books dedicated to expert elicitation see e.g. Meyer and Booker, 1991 and Ayyub, 2001. 
Cooke, 1991 addresses wider methodological and theoretical issues concerning expert 
judgement in uncertainty. 
Below we discuss a number of extra points, next to the ones mentioned under the heading 
‘Goals and Use’ which deserve special attention when setting up and performing an 
elicitation: 
 
1. Preliminary screening  
The amount of work can be reduced by performing some preliminary screening to select those 
variables whose uncertainty will affect the outcomes of interest most. Expert elicitation can 
then focus first on these variables, whilst the other variables are assessed e.g. in a less 
thorough way. 
 
2. Importance of providing rationale on choices, and assessment of quality (checks and 
balances)  
The uncertainty assessments, as well as the underlying motivations, assumptions and 
information (measurements, models, reasoning, literature references etc.) that have been used 
to provide them should be well documented. Some discussion on the backing and quality of 
this material is also important, as well as an indication of which uncertainty aspects have been 
left aside. Applying a systematic analysis like e.g. pedigree analysis can be helpful for this 
purpose. 
 
3. Variability vs. lack-of-knowledge related uncertainty 
Uncertainty can partly be seen as an intrinsic property of the system (variability and diversity; 
but also sampling error), and partly as property of the analyst and knowledge base (e.g. lack of 
good-quality data, lack of expert knowledge; lack of consensus; controversy1).  
Though there is often a certain degree of arbitrariness2 in distinguishing between this 
variability-induced uncertainty (‘aleatory’) and lack-of-knowledge induced uncertainty 
(‘epistemic’)3, depending on e.g. modelling purpose, choice of analysis and aggregation level, 
available information, tradition,  (see e.g. Baecher and Christian, 2001), we think it is 
important to treat this distinction4 explicitly and with care when eliciting on uncertainty. Hora, 

                                                           
1 Though these latter aspects (lack of consensus, controversy) can also be partly seen as system 
properties, reflecting variability and diversity rather than lack-of-knowledge. 
2 Some researchers even argue that at a basic level it is questionable to make this distinction (see 
Winkler, 1996; Bedford and Cooke, 2001), but that from a practical viewpoint it can certainly be 
helpful to distinguish between aleatory and epistemic, in order to decompose and analyse the 
underlying issues leading to uncertainty in an adequate way. 
3 This distinction has been described under various names, e.g. stochastic, type A, irreducible, 
variability for aleatory, and subjective, type B, reducible, and state of knowledge for epistemic. 
4 See e.g. Hofer, 1996, for a clear discussion on the need to use this distinction. See also Hoffman and 
Hammonds, 1994. 
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1996, illustrates that a careful decomposition and treatment of aleatory and epistemic 
uncertainty, centered on the notion of conditional probabilities, is essential for the expert 
elicitation process and can highly influence the further processing and assessment of 
uncertainties. See also the recent study of van Oorschot et al., 2003, which underlines these 
findings. 
 
4. Heuristics and biases 
In providing information by expert elicitation one has to cope with judgemental ‘heuristics’ 
(mental rules of thumb) and the ‘biases’, which they produce in the expert judgement (see 
Kahneman et al. 1982, Griffin et al. 2002). This relates to biases due to cognitive processes as 
well as to motivational, social and cultural biases (see the subsequent entry on pitfalls). One 
can try to diminish these biases by training the expert in elicitation and its pitfalls and by 
setting up the elicitation process adequately (using individual and/or controlled group settings, 
applying e.g. Delphi technique; nominal group (Benarie, 1988, Cooke, 1991, Ayyub, 2001)) 
and formulating the elicitation questions in a judicious and unambiguous way (e.g. by 
applying counterfactual reasoning; asking first to specify the extremes). However, debiasing 
expert judgements before and during elicitation will stay a difficult goal. Ex post calibration 
can have some value, but it requires a reasonable amount of data, and moreover the quality 
and representativeness/covering should be adequate (e.g. Clemen and Lichtendahl (2002) 
present a Bayesian based calibration method to debias expert overconfidence, enabling also 
interrelationships between the inference of experts). 
 
5. Selection of distributional form 
When data is scarce, a test on goodness of fit will usually give no distinctive outcomes 
concerning the distribution types (see Cullen and Frey,1999, Morgan and Henrion 1990, Seiler 
and Alvarez 1996). 
For situations with few data a more robust approach is to select distributions in such way that 
the uncertainty associated with the available information is maximized, i.e. not imposing extra 
assumptions that are not warranted by data (minimal information). As a first approximation 
the following distributions are suggested: 
 

Available values Shape of distribution to use 
{min,max} Uniform 
{mean, standard deviation} Normal 
{min,max,mode} Triangular 
{min=0, mean} Exponential 
(min,max,mean,sd} Beta 
{min>0,quantile} Gamma 
{min,max,mean} Beta 
{min=0, quantile} Exponential 

 
The following rules of thumb can offer some guidance in this setting (an important issue 
which is not explicitly addressed, but should nevertheless be taken into account, is the quality 
(e.g.) accuracy of the available information on min, max etc.):  
• If little or no relevant data exist, and information on min, max, or most probable 

value is not available, then it is recommended to carry out calculations with different 
PDFs in the parameter, to reflect whatever feasible information is available. The 
uncertainty-range in the corresponding outcomes gives a rough indication of the lack-of-
knowledge in the parameter. 

• If Min,max is given try uniform distributions; in case of a large range, try 
loguniform distribution; if additionally a mode is given, try triangular, or likewise log-
triangular in case of a large range. 

• If some relevant data exist, but cannot be represented by standard statistical 
distribution, then use piecewise uniform (empirical) distribution. 

• If substantial amount of data exist, and can be reasonably well represented by 
standard distribution, use estimation to find the characteristic distributional parameters 
(e.g. maximum likelihood, method of moments; Bayesian etc.) 
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• In case the parameter can be expressed as quotient/product of other parameters, 
it is often feasible to approximate the PDF by a lognormal distribution (see also (Vose 
2000; Cullen and Frey 1999; Morgan and Henrion 1900). 

 
In the Cooke and Goossens protocol, the experts typically have to assess the 5, 50 and 95 
quantiles (but other or more pinpoints can be chosen; cf. van Oorschot et al., 2003), as a basis 
for specifying the distribution. This information is further processed using minimal 
information theoretic arguments. 
Van der Fels-Klerx et al. 2002 recommend the use of the graphical software tool ELI (van 
Lenthe, 1993) to elicit PDFs for continuous variables. It employs the general beta-distribution 
as a template, and makes elicitation easier, and less prone to errors and biases. 
Needless to say, specific applications can require special forms of distributions (e.g. when 
modelling extreme events) and the above-given recommendations are therefore not necessarily 
the optimal ones. 
 
6. Correlation or dependence specifications 
The way in which dependence or correlation is taken into account and elicited can highly 
influence the outcomes of the uncertainty assessment. Often little is known on specific 
dependencies, and dependence elicitation is not an easy job. In the Cooke and Goossens 
methodology this elicitation is done using the notion of conditional probability, querying an 
expert to ‘specify what the probability is that the value of  Z will lay above its median, in case 
that Y was observed to lie above its median, in an experiment which involves both Z and Y’. 
This probability-information can be easily translated into a specific rank-correlation between 
Z and Y (cf. e.g. Kraan, 2002; section 2.1.2). In order to prevent that an expert has to specify 
too many dependencies - which moreover can easily lead to incompatible correlation matrices 
- two parsimonious query procedures have been proposed by Cooke and his co-workers, use 
copulas1 as a basis for the dependence structure. The first one employs a tree (i.e. an acyclic 
undirected graph) in which the rank correlations are specified for a (limited) selection of all 
possible correlations. Using minimal information theoretical arguments and bivariate copulas 
(Meeuwissen and Cooke 1994), a sample is constructed with the requested marginal 
distributions having a compatible correlation structure with the specified dependencies. The 
second approach is a generalization of the correlation tree method, and uses a vine as the basic 
structure for specifying desired rank correlations. A vine is a nested set of trees build on top of 
each other where the edges of tree j are the nodes of tree j+1 (see e.g. Bedford and Cooke, 
section 17.2.5). By using partial correlation specification associated to the vine edges, and 
using e.g. elliptical copula, a sample can be constructed which exhibits desired marginals and 
a specific rank correlation matrix. The advantage of the partial correlation based specification 
is that no conditions like positive definiteness need to be satisfied for the specification, and 
that the associated sampling ‘works on the fly’: i.e. one sample vector at a time is drawn, 
without a need to store large numbers of samples in memory. See e.g. Kurowicka and Cooke 
(2001). Part of these procedures have been implemented in UNICORN (Cooke, 1995). 
 
Apart from the way in which correlation and dependence is expressed mathematically, also the 
structuring (decomposition, recomposing and aggregating) of the problem will to a large 
extend determine in which way dependence will be encountered. It makes for instance quite a 
difference whether the basic level of analysis and elicitation is an individual, a subpopulation 
or a complete population. Moreover, (unexpected) dependencies and correlations can be 
introduced when both aleatory and epistemic uncertainties are present (Hora, 1996): e.g. when 
the parameters which describe the variability are not completely known2 this epistemic 
uncertainty in fact pervades all elements of the population in a similar way, rendering a certain 
dependence between the sampled individuals. The associated uncertainty which is introduced 
in this manner in fact reflects a systematic error, cf. also Ferson and  1996.  
Part of these issues are illustrated by the recent study of van Oorschot et al. 2003 where an 
extensive uncertainty assessment of an emission inventory is reported. This assessment 

                                                           
1 A copula is a joint distribution on the unit square having uniform marginals. It provides a suitable 
technique for modelling dependence, going beyond the pitfalls of correlation. (see e.g. Embregts, 
McNeil and Straumann, 1999; Clemen and Reilly, 1997) 
2 I.e. there is epistemic uncertainty concerning the precise form of the variability. 
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consisted of upgrading an expert elicitation on the individual level towards uncertainty 
statements on the total population level, taking due account of the presence of aleatory and 
epistemic uncertainty. Experiences with this study made clear that elicitation and analysis of 
aleatory and epistemic uncertainty and associated dependencies, remains a challenging field of 
research. 
 
7. Aggregating expert judgements 
In practice it can occur that expert opinions differ considerably on specific issues (cf. Morgan 
and Keith, 1995; Morgan et al. 2001, Morgan, 2003). There is no univocal strategy on how to 
handle these situations:  
• One option is trying to combine the individual estimates into a kind of group-

PDF  (see e.g. Clemen and Winkler, 1999), which is supposed to ‘summarize’ the group 
opinion. However one has to be careful with drawing such a conclusion: a ‘summary’ in 
the form of one group PDF does not necessarily express a consensus, and moreover the 
summary may obscure or suppress differences among experts and thus over present the 
precision in the judgements (Hora, 1992). It has to be stressed that it always will be 
important - notwithstanding the focus on coming up with a group- PDF - to analyse and 
discuss the diversity in individual PDFs in some detail: e.g. where does it occur, what are 
its main reasons and what are its major effects on the final results of interest (compare e.g. 
the robustness and discrepancy analysis of Cooke and Goossens 2000a,b). Such kind of 
analysis will render relevant information for the decision maker on how to interpret and 
use the results and where to focus for potential improvements in uncertainty information. 

• Another option is not to combine the individual PDFs in case of considerable diversity, 
but to present and discuss the diversity in the individual PDFs separately in its full scope, 
indicating its potential consequences for policy analysis. See e.g. Keith, 1996, who 
advocates that diversity can serve as a warning flag to seek for meaningful alternative 
modes of policy analysis, which may be highly relevant for the debate concerning the 
problem. He warns against adhering to one ‘pseudo’-truth, on basis of an ‘aggregated 
PDF’, and thereby masking diversity which can be due to e.g. disparate values and 
interests. Especially in cases where there exist scientific controversies, we recommend to 
avoid combining expert judgements because it goes at the expense of transparency of the 
analysis and looses some insightful information on the level and nature of scientific 
controversy and expert disagreement. In case of policy problems, which require a post-
normal science approach to risk assessment, such information is crucial and should not be 
obscured by aggregation. 

 
Practical considerations will however often force one to work with one PDF for each source 
of uncertainty (e.g. it is often practically infeasible to work through and present all the multi-
expert combinations on all sources of uncertainty etc.). Given the above caveats it is important 
to clearly indicate the assumptions and limitations in doing so, to prevent that the results will 
be wrongly interpreted. 
Finally we will discuss two main ways to aggregate expert opinions (see Clemen and Winkler, 
1999):  
• Using behavioural approaches which try to establish a consensus-PDF by carefully-

structured joint group meetings (using e.g. ‘Delphi method’, ‘nominal group technique’, 
‘decision conferencing’, to exchange, discuss and process information and views etc.). 
Trying to avoid social and cognitive trappings in group discussion is an important issue, 
but no overall best method seems to exist. Often consensus cannot be reached, despite of 
repeated group-meetings. Mathematical aggregation is finally used as a rather arbitrary 
and artificial way of providing one PDF.  

• Using mathematical aggregation approaches which can range from simply averaging the 
individual information on probabilities to a more sophisticated analysis of the information 
aggregation process, accounting for information on the performance-quality of the experts 
(Goossens, Cooke and Kraan, 1998) and the dependence among the experts’ probabilities 
(Reichert and Keith, 2003). Clemen and Winkler, 1999, state that the more complex 
combination rules sometimes outperform the simple rules (e.g. simple averaging), but that 
they can be more sensitive, leading to poor performance in some instances (i.e. robustness 
is low). 
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The empirical evidence in Clemen and Winkler 1999 does not suggest a preference for one of 
these approaches, but suggests that a wise use of both methods will often be the best approach 
in practice. More future research is apparently needed. 
 

Pitfalls 
• Unfamiliarity of the expert with the wording and statistical terminology in elicitation 

questions (e.g. sometimes people are inclined to specify the mean when they are asked for 
the median, which is apparently incorrect for asymmetric distributions). Clear and 
unambiguous questions are of importance, especially concerning issues as variability- and 
‘lack-of-knowledge’-induced uncertainty and correlations and dependencies. Using 
frequency formats when talking on probabilities connects better to the way people reason 
and experience (Hoffrage et al. 2000), and is therefore suggested as the preferred way of 
communicating on chances, even in a ‘uncertainty as degree-of-belief’-setting (Anderson, 
1998a, 1998b). A brief training in background and use of statistical terminology for 
elicitation is recommended.  

• The occurrence of groupthink or social bias in group settings during an elicitation process. 
It is recommended to use procedures or techniques to diminish this influence. 

• The ‘validity’ of the obtained scores in assessing the quality of the provided uncertainty 
information can be low e.g. due to lack of representativity, scope and accuracy of the seed 
variables in a performance assessment or due to inherent subjectivity and limitations of 
personal scope in the self-rating and pedigree analysis process. Therefore explicit 
attention should be spend on these aspects, and potential weak spots should be mentioned. 

• The outcomes of the probabilistic inversion are dependent on the model structure that is 
used. Ideally some level of ‘model-structure validation’ will be required to improve the 
confidence in the obtained results. 

• In combining expert-opinions one runs the risk of masking expert disagreement and 
throwing away important information concerning the problem, especially if the major 
differences between the expert opinions are not explicitly discussed and explained. 
Moreover one should be cautious in interpreting a combined PDF: it by no means needs 
to represent a consensus view on uncertainty.  

• Bias: The major pitfall in expert elicitation is expert bias. Experts and lay people alike are 
subject to a variety of potential mental errors or shortcomings caused by man’s simplified 
and partly subconscious information processing strategies. It is important to distinguish 
these so-called cognitive biases from other sources of bias, such as cultural bias, 
organizational bias, or bias resulting from one’s own self-interest (from Psychology of 
Intelligence Analysis, R.J. Heuer, 1999; http://www.cia.gov/csi/books/19104/index.html). 
Some of the sources of cognitive bias are as follows: overconfidence, anchoring, 
availability, representativeness, satisficing, unstated assumptions, coherence, and experts 
should be informed on the existence of these biases during the expert elicitation process. 
Below a brief explanation is given of these sources; see for more details e.g. Dawes 
(1988).  
Anchoring Assessments are often unduly weighted toward the conventional value, or first 
value given, or to the findings of previous assessments in making an assessment. Thus, 
they are said to be `anchored' to this value.  
Availability This bias refers to the tendency to give too much weight to readily available 
data or recent experience (which may not be representative of the required data) in 
making assessments.  
Coherence Events are considered more likely when many scenarios can be created that 
lead to the event, or if some scenarios are particularly coherent. Conversely, events are 
considered unlikely when scenarios cannot be imagined. Thus, probabilities tend to be 
assigned more on the basis of one's ability to tell coherent stories than on the basis of 
intrinsic probability of occurrence.  
Overconfidence Experts tend to over-estimate their ability to make quantitative 
judgements. This is often manifest with an estimate of a quantity and its uncertainty range 
that does not even encompass the true value of the quantity. This is difficult for an 
individual to guard against; but a general awareness of the tendency can be important.  
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Representativeness This is the tendency to place more confidence in a single piece of 
information that is considered representative of a process than in a larger body of more 
generalized information.  
Satisficing This refers to the tendency to search through a limited number of solution 
options and to pick from among them. Comprehensiveness is sacrificed for expediency in 
this case.  
Motivational People may have incentives to reach a certain conclusion or see things a 
certain way. Reasons for occurrence of motivational bias include: a) a person may want to 
influence a decision to go a certain way; b) the person may perceive that he will be 
evaluated based on the outcome and might tend to be conservative in his estimates; c) the 
person may want to suppress uncertainty that he actually believes is present in order to 
appear knowledgeable or authoritative; and d) the expert has taken a strong stand in the 
past and does not want to appear to contradict himself by producing a distribution that 
lends credence to alternative views.  
Unstated assumptions A subject's responses are typically conditional on various unstated 
assumptions. The effect of these assumptions is often to constrain the degree of 
uncertainty reflected in the resulting estimate of a quantity. Stating assumptions explicitly 
can help reflect more of a subject's total uncertainty.  
 
Gigerenzer (1991,1994) and Cosmides and Tooby (1996) argue that part of these biases 
are not so much caused by the limited cognitive abilities of the human mind, but more by 
the way in which information is presented or elicited. A thoughtful wording of questions 
can be helpful to avoid part of these biases. Performing dry run exercises (try-outs) can 
render important feedback on the suitability of the posed questions.  
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Scenario analysis 

Description 
Scenario analysis is a method that tries to describe logical and internally consistent sequences 
of events to explore how the future might, could or should evolve from the past and present. 
The future is inherently uncertain. Through scenario analysis different alternative futures can 
be explored and  thus uncertainties addressed. As such, scenario analysis is also a tool to deal 
explicitly with different assumptions about the future. Several definitions of scenarios can be 
found in the literature. In the definition of UNEP (2002), the uncertainty aspect is explicitly 
incorporated. “Scenarios are descriptions of journeys to possible futures. They reflect different 
assumptions about how current trends will unfold, how critical uncertainties will play out and 
what new factors will come into play”. Another definition is the following: A scenario is a 
description of the present state of a social and or natural system (or a part of it), of possible 
and desirable future states of that system along with sequences of events that could lead from 
the present state to these future states (e.g. Jansen Schoonhoven and Roschar, 1992). Other 
definitions also include the purposes of the use of scenarios. Van Notten (2002) defines 
scenarios as “descriptions of possible futures that reflect perspectives on past, present, and 
upcoming developments in order to anticipate the future”.  
Different types of scenarios exist. Alcamo (2001) discerns baseline vs. policy scenarios, 
exploratory vs. anticipatory scenarios and qualitative vs. quantitative scenarios.  
 
• Baseline scenarios (or reference-, benchmark- or non-intervention scenarios) present the 

future state of society and environment in which no (additional) environmental policies do 
exist or have a discernable influence on society or the environment. Policy scenarios (or 
pollution control-, mitigation- or intervention scenarios) depict the future effects of 
environmental protection policies. 

• Exploratory scenarios (or descriptive scenarios)  start in the present and explore possible 
trends into the future. Anticipatory scenarios (or prescriptive or normative scenarios) start 
with a prescribed vision of the future and then work backwards in time to visualise how 
this future could emerge.  

• Qualitative scenarios describe possible futures in the form of narrative texts or so-called 
“story-lines”. Quantitative scenarios  provide tables and figures incorporating numerical 
data often generated by sophisticated models. 

 
Finally scenarios can be surprise-free or trend scenarios, which extend foreseen developments,  
on the one hand or including surprises and exploring the extremes (e.g. best case / worst case) 
on the other hand. 

 

Goals and use 
Typical objectives of scenario analysis in environmental assessment are (Alcamo, 2001): 
• Providing a picture of future alternative states of the environment in the absence of 

additional environmental policies (baseline scenarios). 
• Illustrating how alternative policy pathways can achieve an environmental target 
• Identifying the robustness of environmental policies under different future conditions 
• Raise awareness about different (future) environmental problems and the connection 

between them 
• Help stakeholders, policymakers and experts to take into account the large time and space 

scales of a problem 
• Combine qualitative and quantitative information about the future evaluation of an 

environmental problem 
 
Alternative baseline scenarios can be used to evaluate the consequences of current policies 
taking into account uncertainties in driving forces, such as economic and socio-cultural 
developments. Also alternative baseline scenarios can be used to take into account 
uncertainties about environmental processes occurring in nature and about impacts of 
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environmental conditions on human health. In the same way policy scenarios can be used to 
evaluate environmental and economic impacts of environmental policies or other policies 
taking into account uncertainties in e.g. societal driving forces and environmental processes.  
 
Exploratory scenarios can be used when the objective is to explore the consequences of a 
specified future trend in driving forces, or the consequences of implementing a policy. 
Anticipatory scenarios can be used when the objective is to investigate the steps leading to a 
specified end state, such as an environmental target. 
 
Qualitative scenarios analysis can be used when the objective is to stimulate brainstorming 
about an issue, when many views about the future have to be included or when an idea has to 
be formed about for example general social and cultural trends. Quantitative scenario analysis 
can be used for assessments that require data and numbers, for example on the magnitude of 
air pollutant emissions. 
Combinations are also possible, e.g. the “Story-and-Simulation” (SAS) approach, which 
combines the development of qualitative “storylines” by a group of stakeholders and experts 
and the use of models to quantify the storylines (Alcamo, 2001).  
 
The principal elements of  typical scenarios used in environmental studies are (adapted from 
Jansen Schoonhoven and Roschar, 1992 and  Alcamo 2001): 
• Description of  the present situation  
• Several alternative views on future developments, e.g. by means of story lines  
• Description of step-wise changes in the future state of society and the environment i.e. 

trajectories consisting of logical sequences of events that correspond with and are 
consistent with each view on future developments. 

• Driving forces influencing the step-wise changes 
• Base year 
• Time horizon and time steps 
 
The main methods for in developing scenarios are: 

- Scenario writing (qualitative scenarios): policy exercises 
- Modeling analysis (quantitative scenarios) 

 
The University of Kassel developed a method to combine both qualitative and quantitative 
approaches: the  SAS is approach as mentioned above. (Alcamo, 2001) 
 
The SAS approach includes the following steps: 
 
1. The scenario team and scenario panel are established 
2. The scenario team proposes goals and outline of scenarios 
3. The scenario panel revises goals and outline of the scenarios, and constructs zero order 

draft of storylines 
4. Based on the draft story line the scenario team quantifies the driving forces of the 

scenarios 
5. Based on the assigned driving forces , the modelling teams quantify the indicators of the 

scenarios 
6. At the next meeting of the scenario panel , the modelling team report5s on the 

quantification of the scenarios and the panel revises the storylines 
7. Steps 4,5 and 6 are repeated until an acceptable draft of storylines and quantification is 

achieved. 
8. The scenario team and panel revise the scenarios based on results of the general review 
9. The final scenarios are published ad distributed. 
 

Sorts and locations of uncertainty addressed 
Scenario Analysis typically addresses ignorance, value-ladenness of choices (assumptions) 
and  “what-if” questions (scenario uncertainty) with regard to both the context of the 
(environmental) system considered in the assessment and assumptions about the 
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environmental processes involved. Furthermore Scenario Analysis addresses ignorance, value-
ladenness of choices  and scenario uncertainty associated with input data and  driving forces 
used in models.  
 

Required resources 
Scenario analysis requires creativity and ability to think outside the scope of the familiar and 
the present. Further it requires insight in dynamics, relationships, en synergies of systems and 
their environment and thus it requires a broad knowledge of the field involved. Therefor 
scenarios analysis should take place in an interdisciplinary team. 
 
In the case of a quantitative approach, computer models or spreadsheets or other  software are 
needed to run/visualise scenarios. Access to relevant data is important in order to be able to 
construct the scenarios. 
 
In the case of a qualitative approach, input has to be collected from experts, stakeholders  or 
users in workshops with stakeholders to be able to develop storylines. Basic skills for 
facilitating groups. 
 
 Both approaches are time and resource consuming. 

 

Strengths and weaknesses 
Strengths of scenario analysis: 
• Scenarios are often the only way to deal with the unknown future; 
• Assumptions about future developments are made transparent and documented 
• Gives insight in key factors that determine future developments; 
• Creates awareness on alternative development paths, risks, and opportunities and 

possibilities for policies or decision-making. 
 
Weaknesses of  scenario analysis  are:  

 
• The analysis is limited to those aspects of reality that can be quantified (quantitative 

scenarios) 
• Difficult to test underlying assumptions (qualitative scenarios) 
• Frequently scenarios do not go beyond trend extrapolation (quantitative scenarios); 
• Frequently scenarios are surprise-free;  
• Frequently models used contain only one view, which will make the outcomes narrow in 

scope, thus not doing justice to the wish to explore fundamentally different futures 

Guidance on application 
• Define very well what the objectives of the scenario analysis are: adjust the scenario 

development and analysis according to the objectives. 
• Make sure the scenarios are transparent and well documented 
• Scenario should not be implausible (they should be recognizable and internally 

consistent) 
• Be aware and explicit about the limited scope of a certain model used 
• Present as many scenario as possible and as few as necessary: it is important to represent 

many views and possibilities, however with too many scenarios it will be difficult to 
communicate results (analyse many, report few)   

 

Pitfalls 
Typical pitfalls of scenario analysis are: 
• Undue suggestion of objectivity and completeness: a presentation of e.g. 4 different does 

not mean that there are only 4 possible ways for the future to develop 
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• Quantitative scenarios might suggest numerical exactness and suggest more certainty 
about the future than we have ; 

• Analysts and users often forget that outcomes are often based on models which 
themselves contain assumptions on the future already 

• Scenarios often reflect more our present expectations and beliefs then future 
developments, and therefore have a tendency to be rather conservative.  

• Scenarios do not forecast what will happen in the future, rather they indicate what might 
happen under certain well-specified conditions (what-if). Typically scenarios are used in 
situations where there is lack of information on underlying mechanisms and 
developments, and therefore it is usually impossible to adhere probabilities to scenarios. 
Statements on the likelihood of scenarios therefore should be considered with due care. 

• Presenting an uneven number of scenarios may lead users to assume that the middle 
scenario is the most probable scenario 
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PRIMA: A framework for perspective-based uncertainty management 
by Marjolein B.A. van Asselt 

Description 
PRIMA is an acronym for Pluralistic fRamework of Integrated uncertainty Management and 
risk Analysis. PRIMA is not a tool in the classic sense, but a meta approach (organising 
framework) to structure the process of uncertainty management (van Asselt, 2000). The 
guiding principle is that uncertainty legitimates different perspectives on policy issues and 
that, as a consequence, uncertainty management should explicitly take these different 
perspectives into account. In doing so, different legitimate interpretations of uncertain values 
and causal relationships are explored in a systematic manner, which enables to tell a story 
behind the various outcomes/outlooks.   
 

Goals and use 
Central to the PRIMA approach is the determination of the most policy-relevant uncertainties 
that play a role in controversies surrounding complex issues. Subsequently, in the process of 
assessing the policy problem these uncertainties are explicitly ‘coloured’ according to various 
perspectives. Starting from these perspective-based interpretations, various legitimate and 
consistent narratives are developed to serve as a basis for perspective-bases model routes 
(example TARGETS, Rotmans and de Vries) or as a basis for selected model experiments 
(example with water management, van Asselt, Middelkoop et al. 2001). These model routes 
are then used for systematic experiments to assess robust strategies and potential risks. It is at 
least an alternative for ad hoc based scenario experiments with models.  

Sorts and locations of uncertainty addressed 
PRIMA is especially suited for uncertainties, which can be interpreted differently from 
normative standpoints. In practice this usually means that PRIMA is useful for uncertainties of 
the sort of scenario uncertainty and recognized ignorance. The method of perspective-based 
multiple model routes, which is the main PRIMA technique by definition involves both model, 
input and parameter uncertainties and to a lesser extent involves the context.   

Required resources 
• The most important requirement is real interdisciplinary teamwork; especially learning 

each other’s language and taking disciplinary boundaries takes time, patience and social 
skills.  

• The major investment in PRIMA is spending time on interpreting uncertainties from a 
particular perspective, first in a qualitative narrative and then in the translation in model 
terms (quantities, parameter values and mathematical equations). This concerns not just 
time which must be invested in the actual interpretation exercises (hours–weeks), but also 
time which is needed to enable the interpretations to stabilize and mature (months at 
least). Searching the literature for values and equations that can be used to quantify the 
perspectives in a scientifically sound manner takes time (dependent on the actual 
expertise and experience of the experts involved). The actual full throughput time for 
building perspective-based model routes in the TARGETS model (i.e. five submodules 
with completely different topics) was about one year. The analysis of the perspective-
based experiments for the model as a whole took another half year. In the case of the 
application of PRIMA to water management, in which participatory perspective 
workshops were held (which is an additional investment), it took one year to arrive at 
stable qualitative interpretations and another year for quantification and model 
experiments.    

• The idea of perspective-based multiple model routes can be applied in any software 
environment in which it is possible to program switches. In the TARGETS model, 
technically speaking a switch parameter “PERSPECTIVE” was used, which had three 
‘values’: hierarchist (1), egalitarian (2) and individualist (3). Dependent on the value of 
this switch parameter particular parameter value sets or model routes are activated. 
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Guidance on application 
PRIMA is an iterative and cyclical approach that has been set up in a modular manner:   

starting perspective

uncertainty in
perspective

scenarios
in perspectiverisks in perspective

quality
assessment

use of outputs

Key characteristics of module: 
• starting perspective: to what type of uncertainties PRIMA will be applied and which 

controversy or dilemma being assessed. tools: discussion (also with clients/stakeholders), 
reflection 

• uncertainties in perspective: scan and selection of key uncertainties and perspective-
based interpretation of these uncertainties. tools: iterative process which can includes 
brainstorming exercises, ranking techniques, interviews with experts, participatory 
workshops with role-playing, desk/literature study,: 

• scenarios in perspective: scanning the future from a wide variety of perspectives; this can 
be done both in a qualitative and quantitative manner. tools: participatory techniques for 
scenario analysis; perspective-based model routes; Monte-Carlo can be used as 
complementary tool to assess statistical uncertainties in values used for each perspective 

• risk-in-perspective: assess risks and developing robust strategies, taking into account the 
variety of perspective-based assessments gathered. tools: sensible risk comparisons, 
critical reflection and synthesis; Note: most difficult (!) and immature module, for which 
not many concrete hints can be given. 

• quality assessment: test the quality of the associated robust insights by reflecting on the 
previous steps that means evaluating whether the uncertainties have been considered in an 
adequate manner. tools: quality checklists, pedigree matrices, uncertainty review 

 
Hints: It is not necessary to carry out the full cycle, modules can to a certain extent be used in a 
stand-alone version.  

 

Strengths and limitations  
Typical strengths of PRIMA are: 
• The major innovative feature is to see pluralism not as part of the problem, but as part of 

the solution. From that perspective, PRIMA is the only approach so far that advances and 
provides structure to the systematic use of multiple values, paradigms, perceptions, 
judgements, etc in assessment processes. 

• The major advantage of PRIMA is that more than one perspective made explicit is, in 
view of the inherent bias of interpretations of uncertainty better than an at first sight 
objective model with a hidden perspective.  

• The PRIMA approach is by definition a group process approach. An experienced spin-off 
is the interdisciplinary team-building potential, because the process (facilitated by an 
experienced facilitator) offers a safe environment to share what is usually regarded as 
‘non-knowledge’.  
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Typical weaknesses, pitfalls and limitations associated with PRIMA are: 
• PRIMA is in the first place a framework that aims to structure the process of perspective-

based uncertainty management. Although it provides a logic for using existing tools and 
techniques in a complementary way, and while it proposes a novel approach (i.e. 
perspective-based model routes), PRIMA is not (and was never meant as) a rigid recipe.  

• Any interpretation of the (ideal types of) perspectives is to a certain degree subjective. The 
only advantage is that the use of stereotypes helps to make interpretations and structures of 
argumentation at least more explicit.  

• In the prototypical versions (TARGETS, water management) the perspectives from Cultural 
Theory have been used. This theory has received (and still receives) strong criticism. Cultural 
theory has been criticised for1 (see, for example, Trisoglio, 1995): 
• providing an oversimplification of reality; 
• being too static in time and place (in reality one can be a hierarchist at work, a fatalist in 

leisure time, and an egalitarian at home); 
• undue universal claims (whereas, in reality, one can for instance act as a hierarchist 

when confronted with one problem and as an egalitarian when confronted with another 
problem) ; 

• not taking account of complex systems of myths of nature. 
However, alternative social scientific theories/perspective frameworks that are both sound 
and have the same strengths are not available.  

• Methods for articulating perspectives of real actors or from behavioural patterns are 
underresearched and underdeveloped. 

• Because of the previous two bullets the key weakness of PRIMA is the perspective 
framework used.  

• As with all scenario exercises, another limitation is that almost no explicit 
heuristics/approaches/methods have been developed for how to arrive insights from a set of 
fundamentally different outcomes / futures. That is a general weakness of Integrated 
Assessment.  

Pitfalls 
See weaknesses under previous heading. 
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Checklist for model quality assistance 

Description 
The Checklist for Model Quality Assistance is an instrument for internal use to assist 
modellers and users of models in the process of quality control. 

Goals and use 
The goal of the Checklist for Model Quality Assistance is to assist in the quality control 
process for environmental modelling. The point of the checklist is not that a model can be 
classified as ‘good’ or ‘bad’, but that there are ‘better’ and ‘worse’ forms of modelling 
practice. The idea behind the checklist is that one should guard against poor practice because 
it is much more likely to produce poor or inappropriate model results. Further, model results 
are not ‘good’ or ‘bad’ in general (it is impossible to ‘validate’ a model in practice), but are 
‘more’ or ‘less’ useful when applied to a particular problem. The checklist is thus intended to 
help guard against poor practice and to focus modelling on the utility of results for a particular 
problem. That is, it should provide insurance against pitfalls in process and irrelevance in 
application. 
 
Large, complex environmental models present considerable challenges to develop and test.  
To cope with this, there has been a lot of effort to characterize the uncertainties associated 
with the models and their projections. However, uncertainty estimates alone are necessarily 
incomplete on models of such complexity and provide only partial guidance on the quality of 
the results.  The conventional method to ensure quality in modelling domains is via model 
validation against observed outcomes.  Unfortunately, the data are simply not available to 
carry out rigorous evaluations of many models (Risbey et al., 1996). 
 
Lack of validation data is critical in the case of complex models spanning human and natural 
systems because they require: socio-economic data which has frequently not been collected; 
data related to value dimensions of problems that is hard to define and quantify; data on 
projections of technical change which must often be guessed at; data on aggregate parameters 
like energy efficiency which is difficult to measure and collect for all the relevant economies; 
geophysical data on fine spatial and temporal scales worldwide that is not generally available; 
data pertinent to non-marginal changes in socio-economic systems which is difficult to collect; 
and experience and data pertaining to system changes of the kind simulated in the models for 
which we have no precedent or access. 
 
Without the ability to validate the models directly, other forms of quality assessment must be 
utilized.  Unfortunately, there are few ready-made solutions for this purpose.  For complex 
coupled models there are many pitfalls in the modelling process and some form of rigour is all 
that remains to yield quality.  Thus, a modeller has to be a good craftsperson (Ravetz, 1971; 
1999).  Discipline is maintained by controlling the introduction of assumptions into the model 
and maintaining good `practice'.  What is needed in this case is a form of heuristic that 
encourages self-evaluative systematisation and reflexivity on pitfalls.  The method of 
systematisation should not only provide some guide to how the modellers are doing; it should 
also provide some diagnostic help as to where problems may occur and why.  
Risbey et al., (2001) have developed a model quality assistance checklist for this purpose to be 
used in the project).  
 
The philosophy underlying the checklist is that there is no single metric for assessing model 
performance and that, for most intents and purposes, there is no such thing as a `correct' model 
or at least no way to determine whether it is correct.  Rather, models need to be assessed in 
relation to particular functions.  Further, that assessment is ultimately about quality -- where 
quality relates a process/product (in this case a model) to a given function.  The point is not 
that a model can be classified as `good' or `bad', but that there are `better' and `worse' forms of 
modelling practice, and that models are `more' or `less' useful when applied to a particular 
problem.  The checklist is thus intended to help guard against poor practice and to focus 
modelling on the utility of results for a particular problem.  That is, it should provide some 
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insurance against pitfalls in process and irrelevance in application.  The questions in the 
checklist are designed to uncover at least some of the more common pitfalls in modelling 
practice and application of model results in policy contexts.  The output from the checklist is 
both indirect, via reflections from the modeller's self-assessment, and direct in the form of a 
set of potential pitfalls triggered on the basis of the modeller's responses. 
 
The checklist is structured as follows.  First there is a set of questions to probe whether quality 
assistance is likely to be relevant to the intended application.  If quality is not at stake, a 
checklist such as this one serves little purpose.  The next section of the checklist aims to set 
the context for use of the checklist by describing the model, the problem that it is addressing, 
and some of the issues at stake in the broader policy setting for this problem. The checklist 
then addresses `internal' quality issues, which refers to the processes for developing, testing, 
and running the model practiced within the modelling group.  A section on `users' addresses 
the interface between the modelling group and outside users of the model.  This section 
examines issues such as the match between the production of information from the model and 
the requirements of the users for that information.  A section on `use in policy' addresses 
issues that arise in translating model results to the broader policy domain, including the 
incorporation of different stakeholder groups into the discussion of these results.  The final 
section provides an overall assessment of quality issues from use of the checklist. 
The automated version of the checklist also contains an algorithm to produce a list of pitfalls 
based on the answers given. 

Sorts and locations of uncertainty addressed 
The checklist for model quality assistance addresses all sorts of uncertainties at all locations 
distinguished in the uncertainty typology. The focus is mainly on unreliability and ignorance 
and the different sections of the checklist address the different locations where uncertainty 
may be manifest. The sections on internal strength address inputs and model structure, the 
sections on external strength address system boundary and socio-political context. 

Required resources 
It takes between two and four  hours to complete the checklist for a given model, depending 
on the nature and the complexity of the model.  
The checklist is freely available from http://www.nusap.net, both as a interactive web tool and 
as a downloadable pdf file. 

 

Strengths and weaknesses 
Typical strengths of the checklist for model quality assistance are: 
• It provides diagnostic help as to where problems with regard to quality and uncertainty 

may occur and why 
• It raises awareness of pitfalls in the modelling process; 
 
Typical limitations of the checklist for model quality assistance are: 
• It is not a panacea for the problem that models of complex systems cannot be validated. 

 

Guidance on application 
• Make sure that the one who completes the checklist has sufficient knowledge on the 

model and its use. 
• It is recommendable that several members of a modelling team complete the checklist 

independently of one another and then afterwards discuss backgrounds of eventual 
differences in results. 

Pitfalls 
Typical pitfalls of the checklist for model quality assistance are: 
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• The checklist is a tool for self-elicitation. Consequently the pitfalls of expert bias apply. 
For a full description we refer to the pitfalls listed under the entry "Expert Elicitation" in 
this toolbox document. 

• Note that quality assistance is not the same as quality control: Running the checklist on 
your model does not warrant quality. 

• Be aware that running the checklist does not make model evaluation or validation efforts 
superfluous. 
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A method for critical review of assumptions in model-based 
assessments 

Description 
This method enables to systematically identify and prioritize critical assumptions in (chains of 
linked) models and provides a framework for the critical appraisal of model assumptions.  

Goals and use 
This method aims to systematically identify, prioritise and analyse importance and strength of 
assumptions in models, such as those used for the quantification of Environmental Indicators under 
various scenarios (such as in the Netherlands Environmental Outlook). These indicators are 
typically based on chains of soft-linked computer model calculations that start with scenarios for 
population and economic growth. The models in the chain vary in complexity. Often, these 
calculation chains behind indicators involve many analysts from several disciplines. Many 
assumptions have to be made in combining research results in these calculation chains, especially 
since the output of one computer model often does not fit the requirements of input for the next 
model (scales, aggregation levels). Assumptions are also frequently applied to simplify parts of the 
calculations. Assumptions can be made explicitly or implicitly.   
Assumptions can to some degree be value laden. This method distinguishes 4 types of value-
ladenness of assumptions: value-ladenness in a socio-political sense (e.g., assumptions may be 
coloured by political preferences of the analyst), in a disciplinary sense (e.g., assumptions are 
coloured by the discipline in which the analyst was educated), in an epistemic sense (e.g., 
assumptions are coloured by the approach that the analyst prefers) and in a practical sense (e.g., the 
analyst is forced to make simplifying assumptions due to time constraints).  
The method can be applied by the analysts carrying out the environmental assessment. However, 
each analyst has limited knowledge and perspectives with regard to the assessment topic, and in 
consequence will have some ‘blind spots’. Therefore preferably other analysts (peers) are involved 
in the method as well. Stakeholders, with their specific views and knowledge, can be involved as 
well. This can, for instance, be organised in the form of a workshop. The group of persons involved 
in the assumption analysis will be referred to as ‘the participants’ 
 
The method involves 7 steps: 
ANALYSIS 

1. Identify explicit and implicit assumptions in the calculation chain 
2. Identify and prioritise key-assumptions in the chain 
3. Assess the potential value-ladenness of the key-assumptions 
4. Identify ‘weak’ links in the calculation chain 
5. Further analyse potential value-ladenness of the key-assumptions 

REVISION 
6. Revise/extend assessment 

- sensitivity analysis key assumptions 
- diversification of assumptions 
- different choices in chain 

COMMUNICATION 
7. Communication 

− key-assumptions 
− alternatives and underpinning of choices regarding assumptions made 
− influence of key-assumptions on results 
− implications in terms of robustness of results 

 
All steps will be elaborated on below. 
 
Step 1 - Identify explicit and implicit assumptions in the calculation chain 
In the first step implicit and explicit assumptions in the calculation chain are identified by the 
analyst by systematic mapping and deconstruction of the calculation chain, based on document 
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analysis, interviews and critical review. The resulting list of assumptions is then reviewed and 
completed in a workshop. 
The aggregation level of the assumptions on the assumption list may vary. An assumption can 
refer to a specific detail in the chain (“The assumption that factor x remains constant’), as well 
as refer to a cluster of assumptions on a part of the chain (“Assumptions regarding sub-model 
x”).  
 
Step 2 - Identify and prioritise key-assumptions in the chain 
In step 2 the participants identify the key-assumptions in the chain. The assumptions identified 
in step 1 are prioritised by taking into account the influence of the assumptions on the end 
results of the assessment. Ideally, this selection is based on a quantitative sensitivity analysis. 
Since such an analysis will often not be attainable, the participants are asked to estimate the 
influence of the assumptions on outcomes of interest of the assessment. An expert elicitation 
technique can be used in which the experts bring forward their opinions and argumentation on 
whether an assumption is of high or low influence on the outcome. Based on the discussion the 
participants then can indicate their personal estimate regarding the magnitude of the influence, 
informed by the group discussion. A group ranking is established by aggregating the individual 
scores. 
 
Step 3 - Assess the potential value-ladenness of assumptions 
To assess potential value ladenness of assumptions, a ‘pedigree matrix’ is used that contains 
criteria by which the potential value-ladenness of assumptions can be reviewed. The pedigree 
matrix is presented in Table 1 and will be discussed in detail later on. 
For each key-assumption all pedigree criteria are scored by the participants. Here, again a group 
discussion takes place first, in order for the participants to remedy each other’s blind spots and 
exchange arguments.  
 
The order in which the key-assumptions are discussed in the workshop is determined by the 
group ranking established in step 2 of the method, starting with the assumption with the highest 
rank. 
 
Step 4 - Identify ‘weak’ links in the calculation chain 
The pedigree matrix is designed such that assumptions that score low on the pedigree criteria 
have a high potential for value-ladenness. Assumptions that, besides a low score on the criteria, 
also have a high estimated influence on the results of the assessment can be viewed as 
problematic weak links in the calculation chain.  
 
Step 5 - Further analyse potential value-ladenness key-assumptions  
In step 5, the nature of the potential value-ladenness of the individual key-assumptions is 
explored. Based on inspection of the diagrams visualizing the pedigree scores (or the table of 
pedigree scores), it can be analysed: 
- what types of value-ladenness possibly play a role and to what extent  
- to what extent there is disagreement on the pedigree scores among the participants 
- whether changing assumptions is feasible and desirable 
 
Step 6 - Revise/extend assessment 
Based on the analysis in step 5, it can be decided to change or broaden the assessment. As a 
minimum option, the assessment can be extended with a sensitivity analysis, which gives more 
information on the influence of weak links in the assessment.  
Besides a sensitivity analysis, specific assumptions can be revised or diversified. In the case of 
revising an assumption, the assumption is replaced by a different assumption. In some cases 
however, it will be difficult or undesirable to choose between alternative assumptions, since 
there might be differing views on the issue. If these assumptions have a high influence on the 
assessment as a whole, it can be decided to diversify the assumptions: the calculation chain is 
‘calculated’ using several alternative assumptions in addition to the existing ones. In this way 
several assessments are formed, with differing outcomes, depending on what assumptions are 
chosen.  
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Step 7 - Communication 
It is important to be explicit about potential value-ladenness in the chain and the effects of 
potentially value-laden assumptions on the outcomes of the assessment. Analogous to a patient 
information leaflet, the presentation of the assessment results should be accompanied by 
information on: 
- what are the key-assumptions in the calculation chain 
- what are the weak links in the chain 
- what were the alternatives and what is the underpinning of the choices that were made 

regarding assumptions 
- what is the robustness of the outcomes of interest in view of the key assumptions 
 
The pedigree matrix for assessing the potential value-ladenness of assumptions is presented in 
Table 1. For a general introduction to the concept of pedigree matrix, we refer to the description 
of the NUSAP system in this tool catalogue. The criteria are discussed below. 
 
Type of 
value-
ladenness  

Score→ 
 
Criteria↓  

4 3 2 1 0 

Practical Influence 
situational 
limitations 

choice 
assumption 
hardly 
influenced 

 Choice 
assumption 
moderately 
influenced 

 totally different 
assumption had 
there not been 
limitations 

Epistemic Plausibility  the assumption 
is plausible 

 the assumption 
is acceptable 

 the 
assumptions is 
fictive or 
speculative 

Epistemic Choice space hardly any 
alternative 
assumptions 
available 

 limited choice 
from 
alternative 
assumptions 

 ample choice 
from 
alternative 
assumptions 

Disciplinary, 
epistemic 

Agreement 
among peers 

many would 
have made the 
same 
assumption 

 Several would 
have made the 
same 
assumption 

 few would 
have made the 
same 
assumption 

Socio-
political 

Agreement 
among 
stakeholders 

many would 
have made the 
same 
assumption 

 Several would 
have made the 
same 
assumption 

 few would 
have made the 
same 
assumption 

Socio-
political 

Sensitivity to 
view and 
interests of the 
analyst 

choice 
assumption 
hardly sensitive

 Choice 
assumption 
moderately 
sensitive 

 Choice 
assumption 
sensitive 

  Influence on 
outcomes of 
interest 

the assumption 
has little 
influence on the 
outcome of 
interest 

 the assumption 
has a 
substantial 
influence on an 
intermediate 
variable but/or 
has moderate 
influence on 
the outcome of 
interest  

 the assumption 
has a large 
influence on 
the outcome of 
interest 

 
Table 1: Pedigree matrix for the assessment of the potential value-ladenness of assumptions 
 
 
Influence of situational limitations 



The choice for an assumption can be influenced by situational limitations, such as limited 
availability of data, money, time, software, tools, hardware, and human resources. In absence of 
these restrictions, the analyst would have made a different assumption. 
Although indirectly these limitations might be of a socio-political nature (e.g., the institute the 
analyst works for has other priorities and has a limited budget for the analyst’s work), from the 
analyst’s point of view these limitations are given. It can therefore be seen as primarily 
producing value-ladenness in a practical sense. 
 
Plausibility 
Although it is often not possible to assess whether the approximation created by the assumption 
is in accordance with reality, mostly an (intuitive) assessment can be made of the plausibility of 
the assumption. 
If an analyst has to revert to fictive or speculative assumptions, the room for epistemic value-
ladenness will often be larger. To some extent a fictive or speculative assumption also leaves 
room for potential disciplinary and socio-political value-ladenness. This is, however, dealt with 
primarily in the criteria ‘agreement among peers’ and ‘agreement among stakeholders’ 
respectively. 
 
Choice space 
The choice space indicates to which degree alternatives were available to choose from when 
making the assumption. In general, it can be said that a large choice space leaves more room for 
the epistemic preferences of the analyst. Often, the potential for value-ladenness in an epistemic 
sense is larger in case of a larger choice space. A large choice space will to some extent also 
leave more room for disciplinary and socio-political value-ladenness. These are however 
primarily dealt with in the criteria ‘agreement among peers’ and ‘agreement among 
stakeholders’ respectively. 
 
Agreement among peers 
An analyst makes the choice for a certain assumption based on his or her knowledge and 
perspectives regarding the issue. Other analysts might have made different assumptions. The 
degree to which the choice of peers is likely to coincide with the analyst’s choice is expressed in 
the criterion ‘agreement among peers’. These choices may be partly determined by the 
disciplinary training of the peers, and by their epistemic preferences. This criterion can thus be 
seen connected to value-ladenness in a disciplinary sense and in a epistemic sense.1 
 
Agreement among stakeholders 
Stakeholders, though mostly not actively involved in carrying out assessments, might also 
choose a different assumption in case they were asked to give their view. The degree to which it 
is likely that stakeholders agree with the analyst’s choice is expressed in the criterion 
‘intersubjectivity among stakeholders’. This will often have to do with the socio-political 
perspective of the stakeholders on the issue at hand and this criterion can therefore be seen as 
referring to value-ladenness in a socio-political sense. 
 
Sensitivity to view and interests of the analyst 
Some assumptions may be influenced, consciously or unconsciously, by the view and interests 
of the analyst making the assumption. The analyst’s epistemic preferences, and his cultural, 
disciplinary and personal background may influence the assumption that is eventually chosen. 
The influence of the analyst’s disciplinary background on the choices regarding an assumption 
and the influence of his epistemic preferences are taken into account in the criteria ‘agreement 

                                                           
1 There is a link to controversy, as not all peers would agree to the same assumption if there was 
controversy regarding the issue of the assumption. However, if the majority of peers would choose the 
same assumption, still the score would be 4 (‘many peers would have made the same assumption’). The 
occurrence of controversies in the scientific field thus is not always visible in the score. Reasoned the 
other way around, a score of 0 (‘few peers would have made the same assumption’) does not imply that 
there are controversies surrounding the assumption: it is possible that all peers agree on the issue, yet 
that the analyst for some reason has chosen a different assumption. The same applies to the criterion 
‘agreement among stakeholders’. 
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among peers’, ‘plausibility’ and ‘choice space’. In this criterion the focus is on the room for 
value-ladenness in a socio-political sense.  
 
Influence on results 
In order to be able to pinpoint important value-laden assumptions in the calculation chain it is 
not only important to analyse the potential value-ladenness of the assumptions, but also to assess 
the influence on the end result of the assessment. Ideally, a sensitivity analysis is carried out to 
assess the influence of each of the assumptions on the results. In most cases, however, this will 
not be attainable because it requires the building of new models. This is why the pedigree matrix 
includes a column ‘influence on results’. 
 
The modes for each criterion are arranged in such a way that the lower the score, the more 
value-laden the assumption potentially is. 
 
 
When all participants have scored the assumptions on the criteria, the scores can be presented in 
a table. In order to facilitate a quick overview of the results, diagrams can be used that aggregate 
the scores of the individual experts without averaging them, and in such a way that expert 
disagreement on the scores is visualised.  
 
One diagram is made for each assumption. The diagram is divided into 6 triangular segments, 
each segment representing one criterion (fig 1). The scale in each segment is such that zero is in 
the center of the diagram and the highest score (in this example: 2) on the border. For each 
criterion, the area of the corresponding segment from the center of the diagram up to the 
minimum score given in the group is colored green. If there is no consensus on the score for a 
given criterion, the area in each segment spanned up between the minimum and the maximum 
score in the group for that criterion is colored amber. The remaining area (from the maximum 
score to the outside border of the diagram) -if any- is colored red. 
 

 
Figure 1  Left: an example diagram. Right: explanation of the colours. Note that this example 
used a 3 point scale. Based on our experiences we recommend to use a 5 point scale as in table  
1 (Kloprogge et al. 2004). 
 
The convention follows a traffic-light analogy and is such that would an assumption on all 
criteria score 0 unanimously, the entire diagram will be red. If scores are better, more and more 
green comes into the diagram, whereas expert disagreement on scores is reflected in amber. On 
the other extreme, if an assumption scores the highest on the scale unanimously for all criteria, 
the entire diagram will be green. The scores for each criterion are such that in all cases more 
green in the diagram corresponds to lower potential value-ladenness and more red to higher 
potential value-ladenness.  
A further nuance has been made to account for outliers: in some cases a single outlier score in 
the group distorts the green area in the diagram. In these cases, a light-green area indicates what 
the green area would look like if that outlier were omitted. 
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By looking at the red areas, the extent to which the different types of value-ladenness may have 
played a role in the production process of the assumption can be assessed. Green areas indicate 
that the participants think value-ladenness with regard to the criteria at hand played a small role 
in the production process, red areas that they think value-ladenness played a large role. In case 
of orange areas it can be concluded that there is disagreement among the participants on these 
matters. 
 

Sorts and locations of uncertainty addressed 
The method presented here for critical review of assumptions in assessments typically 
addresses value-ladenness of choices. The locations that are addressed by the method basically 
include all locations that contain implicit or explicit assumptions. 

Required resources 
− The time required for this method is variable. Firstly, it depends on the number of 

calculation chains in the assessment that are analysed and on the complexity of the 
models in these chains. Secondly, the method can be applied by the analysts carrying out 
the assessment alone or can be applied by the analysts, peers and stakeholders. 

− For the workshop, basic facilitator skills are needed. 

Strengths and weaknesses 
Typical strengths of the method are: 

The method enables a well-structured discussion on potentially value-laden assumptions 
among scientists and stakeholders. In this discussion not only the politically controversial 
assumptions are addressed (as is often the case when assessment results are discussed in 
public), but also other assumptions that turn out to be important for assessment results. 

• 

• 

• 

• 
• 

The method acknowledges that also pragmatic factors may play a role in the colouring of 
assumptions 

 
Typical weaknesses of the method are: 

The results may be sensitive to the composition of the group of participants (both the 
number of persons and the persons’ backgrounds). 
The results may be sensitive to procedure details as determined by the group facilitator. 
The method does not offer a clear answer to how to deal with extensive disagreement on 
the pedigree scores of assumptions. 

Guidance on application 
The method can both be applied while the environmental assessment is being carried out, and 
ex post. Application during the assessment is preferable, since an iterative treatment of 
assumptions can improve the environmental assessment. 

Pitfalls 
• Potential value-ladenness should not be confused with actual value-ladenness. Assessing 

the actual value-ladenness of an assumption is impossible, since it would require exact 
and detailed knowledge on what factors contributed to what extent to the analyst’s 
choices. 

• It is the facilitator’s job to make sure that the discussions among the participants do not 
slide off to a quick group consensus, but that there is an open discussion promoting 
critical review. 

References  
The method: 
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